Dynamic response of underground tunnel to explosive loading from penetration weapons in the critical collapse distance
-
摘要: 利用非线性显式动力有限元程序,采用多物质流固耦合计算方法,就GBU-28钻地弹在地下坑道临界震塌爆距处爆炸时,对地下直墙拱坑道的动力响应进行数值模拟。根据围岩动力稳定性和混凝土动态强度判据,结合模拟结果,分析衬砌结构与围岩的相互作用。钻地弹在直墙圆拱断面的坑道临界震塌爆距处爆炸时:围岩处于临界破坏状态,但混凝土衬砌结构处于稳定状态;拱顶的应力峰值明显,且柱状装药情况下,爆炸近区的应力较集团装药情况下的大;拱肩位置出现应力集中;围岩与衬砌结构特征位置处的相互作用载荷与对应质点的振动速度相互耦合,基本成对应的关系。Abstract: Based on ANSYS/LS_DYNA, the multi-material fluid-solid coupling method was adopted to numerically simulate the dynamic responses of an underground straight-wall-arch tunnel to the penetration and explosion of a guided bomb GBU-28.The explosion of the guided bomb GBU-28was initiated at the critical collapse distance of the straight-wall-arch tunnel.The criterions were obtained for evaluating the dynamic stability of the surrounding rock and the dynamic strength of the lining concrete.The obtained criterions were used to analyze the simulated results and explore the interaction between the tunnel lining and the surrounding rock.When the guided bomb explodes at the critical collapse distance of the straight-wall-arch tunnel, the investigated results display the followings:(1)the surrounding rock is in the critical damage state, and the concrete lining is stable and safe; (2)the effective stress peak at the vault is obvious, and under the strip charge condition, the effective stress in the near field of the explosion is higher than that under the group charge condition; (3)the spandrel takes on a stress concentration phenomenon; (4)at the characteristic positions, the interaction pressures between the surrounding rock and the concrete lining are coupled with the vibration speeds of the particles.
-
破坏等级 v/(cm·s-1) 坑道破坏状态 1 5~10 土洞内有掉块,未支护松散岩洞内有小掉块 2 10~20 岩体中有裂隙,破碎岩体有掉块 3 20~30 岩洞内有大掉块,小规模塌方,岩柱有掉块 4 30~60 支护出现裂隙,顶板有塌方 5 60~90 地下工程或砌体破裂,硬岩中裂隙扩展严重 6 >90 地下工程严重破坏 表 2 不同方法得到的坑道拱顶外侧岩石自由场冲击参数
Table 2. Impact parameters in the free field outside the lateral rock of the tunnel vault by different methods
方法 ta/μs tr/μs σp/MPa vp/(m·s-1) ap/(m·s-2) TM5-855-1 1 445.65 144.57 1.75 0.164 461 柱状装药 1 900.00 160.00 2.03 0.214 400 集团装药 1 800.00 130.00 1.95 0.130 424 表 3 岩石质点振动速度的最大值
Table 3. The maximum particle-vibration speeds of rock
位置 vm/(m·s-1) 柱状装药 集团装药 拱顶 0.214 0.160 拱肩 0.550 0.156 拱脚 0.223 0.416 表 4 衬砌质点在柱状装药爆炸冲击下的最大有效应力
Table 4. The maximum effective stress of lining unit under strip charge explosion
位置 σm/MPa 外侧单元 内侧单元 拱顶 2.56 1.90 拱肩 1.56 1.31 拱脚 0.60 0.52 表 5 衬砌质点在集团装药爆炸冲击下的最大有效应力
Table 5. The maximum effective stress of lining unit under group charge explosion
位置 σm/MPa 外侧单元 内侧单元 拱顶 2.16 0.95 拱肩 4.51 0.48 拱脚 1.22 0.11 -
[1] 宁建国.方方面面话爆炸[M].北京: 高等教育出版社, 2011: 108-114. [2] 方秦, 钱七虎.应力波与带软衬垫的地下结构动力相互作用[J].爆炸与冲击, 1988, 8(4): 289-298. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=BZCJ198804000Fang Qin, Qian Qi-hu. Dynamic interaction between stress waves and underground structure with crushable back packing[J]. Explosion and Shock Waves, 1988, 8(4): 289-298. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=BZCJ198804000 [3] 房营光.岩土介质与结构动力相互作用理论及其应用[M].北京: 科学出版社, 2005. [4] Drake J L, Walker R E, Slawson T. Backfill effect on buried structure response[C]//Proceedings of the Fourth International Symposium on the Interaction of Non-nuclear Munitions with Structures, 1989. [5] Wolf J P.土-结构动力相互作用[M].北京: 地震出版社, 1989. [6] 王涛, 余文力, 王少龙, 等.国外钻地武器的现状与发展趋势[J].导弹与航天运载技术, 2005(5): 51-56. http://d.wanfangdata.com.cn/Periodical/ddyhtyzjs200505011Wang Tao, Yu Wei-li, Wang Shao-long, et al. Present status and tendency of foreign earth-penetrating weapons[J]. Missiles and Space Vehicles, 2005(5): 51-56. http://d.wanfangdata.com.cn/Periodical/ddyhtyzjs200505011 [7] 钱七虎, 王明洋.岩土中的冲击爆炸效应[M].北京: 国防工业出版社, 2010. [8] 王斌, 金丰年, 徐汉中, 等.装药爆炸临界震塌爆距的计算分析[J].辽宁工程技术大学学报, 2006, 25(4): 546-548. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lngcjsdxxb200604020Wang Bin, Jin Feng-nian, Xu Han-zhong, et al. Calculation method for critical distance of tunneling engineering exploded to collapse by charge explosion[J]. Journal of Liaoning Technical University, 2006, 25(4): 546-548. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lngcjsdxxb200604020 [9] 谢和平, 陈忠辉.岩石力学[M].北京: 科学出版社, 2004: 130-131. [10] 梁兴文, 叶燕霞.混凝土结构非线性分析[M].北京: 中国建筑工业出版社, 2007, 24-65. [11] 徐干成, 白洪才, 郑颖人.地下工程支护结构[M].北京: 中国水利水电出版社, 2002: 104. [12] 杨阳, 肖明.地下洞室动力计算模型合理截取范围研究[J].中国农村水利水电, 2011, 1(1);111-114. http://www.cnki.com.cn/Article/CJFDTotal-ZNSD201101030.htmYang Yang, Xiao Ming. Research on selecting rational intercepted range of dynamic analysis model[J]. China Rural Water and Hydropower, 2011, 1(1): 111-114. http://www.cnki.com.cn/Article/CJFDTotal-ZNSD201101030.htm [13] 白泽金. LS_DYNA3D理论基础与实例分析[M].北京: 科学出版社, 2005: 75-103. [14] Livermore Software Technology Corporation. LS_DYNA keyword user's manual: Version971[M]. California: Livermore Software Technology Corporation, 2007. [15] 杨秀敏.爆炸冲击现象数值模拟[M].合肥: 中国科学技术大学出版社, 2010. [16] Holmquist T J, Johnson G R, Cook W H. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures[J]. ASME Journal of Applied Mechanics, 2011, 78(5): 051003. http://adsabs.harvard.edu/abs/2011jam....78e1003h [17] 时党勇, 李裕春.基于ANSYS/LS-DYNA8.1进行显示动力分析[M].北京: 清华大学出版社, 2005. [18] U. S. Department of the Army.美陆军技术手册TM5-855-1: 常规武器防护设计原理[M].方秦, 译.南京: 中国人民解放军工程兵工程学院, 1997. -