Numerical analysis of the projectile penetration into the target of corundum-rubble concrete composite overlay
-
摘要: 在先前混凝土三维细观模型和块石遮弹层三维模型研究的基础上,研究了小直径炸弹侵彻条件下,刚玉块石遮弹层的抗侵彻性能。重点分析了弹体侵彻条件对侵彻深度和弹体偏转角度的影响以及遮弹层构造参数对侵彻结果的影响;详细探讨了弹体命中速度、命中角度和弹着点位置,以及刚玉块石大小、体积率和填充混凝土强度对遮弹层抗侵彻性能的影响。与普通块石遮弹层相比,刚玉块石混凝土复合遮弹层具有更好的抗弹体侵彻性能。Abstract: In order to investigate the performances of corundum-rubble overlays subjected to small-diameter bomb penetration, a three-dimensional finite element model is developed. The model is used to study the projectile penetration into the corundum-rubble overlay by taking into account the randomness of corundum-rubble in size, shape and spatial distribution. This paper focuses on the following two aspects. The first is the effects of penetration conditions (such as projectile velocity, impact angle and position) on penetration depth and terminal yawing angle. The second is the influences of the constituted parameters for the corundum-rubble overlay (such as size and volume fraction of corundum-rubble, strength of grouted concrete). The numerical results are compared with the data from rock-rubble overlay, and better performances are found for the corundum-rubble overlay subjected to projectile penetration.
-
符号 意义 值 ρ/(kg·m-3) 密度 3 862.5 G/GPa 剪切模量 77 A 屈服应力常数 792 B 应变硬化常数 510 N 应变硬化指数 0.26 C 应变率相关系数 0.014 M 温度相关指数 1.03 Tm/K 熔化温度 1 793 Tr/K 室温 293 cv/(J·kg-1·K-1) 质量定容热容 477 ${{\dot \varepsilon }_0}$ 参照应变率 1.0×10-6 D1 第一断裂参量 0.05 c/(km·s-1) us-up曲线截距 4.569 s1 第一斜度系数 1.49 s2 第二斜度系数 0.0 s3 第三斜度系数 0.0 γ0 Grüneisen系数 2.17 a γ0的一阶修正 0.46 符号 意义 值 C30 C50 C80 ρ/(kg·m-3) 密度 2 440 2 440 2 440 G/GPa 剪切模量 12.3 14.1 16.7 A 黏性强度系数 0.79 0.79 0.79 B 压力硬化系数 1.60 1.60 1.60 C 应变率参数 0.007 0.007 0.007 N 压力硬化指数 0.61 0.61 0.61 f′c/MPa 单轴抗压强度 24 41 70 σt/MPa 拉伸强度 2.7 3.6 4.65 ${{\dot \varepsilon }_0}$ 参考应变率 1.0×10-6 1.0×10-6 1.0×10-6 εmin 最小断裂塑性应变 0.01 0.01 0.01 pc/MPa 压碎压力 8 13.7 23.33 μc/10-5 压碎体积应变 54 86 123 pl/GPa 压密压力 1.05 1.05 1.05 μl 压密体积应变 0.1 0.1 0.1 D1 损伤常数 0.04 0.04 0.04 D2 损伤常数 1.0 1.0 1.0 符号 意义 值 ρ/(kg·m-3) 密度 3 800 G/GPa 剪切模量 152 A 无损伤强度参数 0.88 B 断裂强度参数 0.431 C 应变率常数 0.007 M 断裂强度参数 0.6 N 无损伤强度参数 0.64 ${{\dot \varepsilon }_0}$ 参考应变率 1.0×10-6 σt/MPa 最大拉伸强度 262 σHEL /GPa Hugoniot弹性极限 6.75 pHEL/GPa Hugoniot弹性极限处的压力 3.65 D1 损伤系数 0.012 5 D2 损伤指数 1.85 Fs 失效判据 1.5 表 4 计算工况
Table 4. Computational cases
工况 靶体 Drk/D 撞击位置 fc/MPa α/(°) Vrk/% v/(m·s-1) 1 0001 1.5 中心 30 0 49.5 300 2 0001 1.5 中心偏左0.5D 30 0 49.5 300 3 0001 1.5 中心偏右0.5D 30 0 49.5 300 4 0001 1.5 中心偏上0.5D 30 0 49.5 300 5 0001 1.5 中心偏下0.5D 30 0 49.5 300 6 0001 1.5 中心 30 5 49.5 300 7 0001 1.5 中心 30 10 49.5 300 8 0001 1.5 中心 30 20 49.5 300 9 0001 1.5 中心 30 0 49.5 200 10 0001 1.5 中心 30 0 49.5 450 11 0001 1.5 中心 30 0 49.5 600 12 0002 1.5 中心 30 0 29.1 300 13 0003 1.5 中心 30 0 82.9 300 14 0004 1.5 中心 50 0 49.5 300 15 0005 1.5 中心 80 0 49.5 300 16 0006 2.0 中心 30 0 49.5 300 17 0007 3.0 中心 30 0 49.5 300 -
[1] Austim C F, Halsey C C, Clodt R L. Protection systems development[R]. Tyndall Airforce Base: Report ESL-TR-83-39, 1982. [2] Gelman M D, Richard B N, Ito Y M. Impact of armor-piercing projectile into array of large caliber boulders[R]. Waterways Experiment Station, 1987. [3] Rohani B. Penetration of kinetic energy projectiles into rock-rubbles/boulder overlays[R]. Vicksburg, Mississippi: U. S. army Engineer Waterways Experiment Station, 1987. [4] Langheim H, Pahl H, Schmolinske E, et al. Subscale penetration tests with bombs and advanced penetration against hardened structures[C]//The Sixth International Symposium on Interaction of Nonnuclear Munitions with Structures. Panama City Beach, Florida, 1993: 12-17. [5] 唐德高, 贺虎成, 陈向欣, 等.刚玉块石混凝土抗弹丸侵彻效应试验研究[J].振动与冲击, 2005, 24(6): 37-39. http://www.cnki.com.cn/Article/CJFDTotal-ZDCJ200506010.htmTang De-gao, He Hu-cheng, Chen Xiang-xin, et al. Experimental study on corundum-rubble concrete against projectile[J]. Journal of Vibration and Shock, 2005, 24(6): 37-39. http://www.cnki.com.cn/Article/CJFDTotal-ZDCJ200506010.htm [6] 唐耀振.刚玉冶炼工艺学[M].北京: 国家机械委机床工具工业局, 1987: 8-10. [7] 方秦, 张锦华, 陈力, 等.全级配混凝土三维细观模型的建模方法研究[J].工程力学, 2013, 30(1): 14-21. http://www.cqvip.com/QK/95324X/20131/44627145.htmlFang Qin, Zhang Jin-hua, Chen Li, et al. The investigation into three-dimensional mesoscale modelling of fully-graded concrete[J]. Engineering Mechanics, 2012, 30(1): 14-21. http://www.cqvip.com/QK/95324X/20131/44627145.html [8] Fang Qin, Zhang Jin-hua. 3D numerical modeling of projectile penetration into rock-rubble overlays accounting for random distribution of rock-rubble[J]. International Journal of Impact Engineering, 2014, 63: 118-128. doi: 10.1016/j.ijimpeng.2013.08.010 [9] 黄民荣, 高永宏, 顾晓辉.刚性弹丸对花岗岩垂直侵彻的理论分析[J].南京理工大学学报:自然科学版, 2008, 32(6): 724-728. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njlgdxxb200806014Huang Min-rong, Gao Yong-hong, Gu Xiao-hui. Theoretical analysis for rigid projectiles normal penetration into granites[J]. Journal of Nanjing University of Science and Technology: Natural Science, 2008, 32(6): 724-728. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njlgdxxb200806014 [10] 许琼萍, 王德荣, 陆渝生.测定某种花岗岩静摩擦系数的试验[J].解放军理工大学学报:自然科学版, 2008, 9(3): 269-273. http://www.cnki.com.cn/Article/CJFDTotal-JFJL200803014.htmXu Qiong-ping, Wang De-rong, Lu Yu-sheng. Experimental study on static friction coefficient of granite survey[J]. Journal of PLA University of Science and Technology: Natural Science Edition, 2008, 9(3): 269-273. http://www.cnki.com.cn/Article/CJFDTotal-JFJL200803014.htm [11] 高文安. GB 50010-2010混凝土结构设计规范: 钢筋机械连接通用技术规程[S].北京: 中国建筑工业出版社, 2011: 11-20. [12] 王政, 楼建锋, 勇珩, 等.岩石、混凝土和土抗侵彻能力数值计算与分析[J].高压物理学报, 2010, 24(3): 175-180. http://www.cnki.com.cn/Article/CJFDTotal-GYWL201003003.htmWang Zheng, Lou Jian-Feng, Yong Heng, et al. Numerical computation and analysis on anti-penetration capability of rock, concrete and soil[J]. Chinese Journal of High Pressure Physics, 2010, 24(3): 175-180. http://www.cnki.com.cn/Article/CJFDTotal-GYWL201003003.htm [13] Holmquist T J, Johnson G R. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures[C]//14th International Symposium on Ballistics. Quebec, Canada, 1993. [14] Beissel S R, Johnson G R. An abrasion algorithm for projectile mass loss during penetration[J]. International Journal of Impact Engineering, 2000, 24(2): 103-116. doi: 10.1016/S0734-743X(99)00146-3 [15] Mclntosh G. The Johnson-Holmquist ceramic model as used in LS-DYNA 2D: ADA357607[R]. Quebec Research and Development Branch Department of National Defence, 1998. [16] Gazonas G A. Implementation of the Johnson-Holmquist Ⅱ(JH-2)constitutive model into DYNA3D[R]. ADA402347. Army Research Laboratory, 2001. -