基于局部相互作用理论的侵彻弹头部形状优化及仿真

邓佳杰 张先锋 葛贤坤 陈东东 郭磊

邓佳杰, 张先锋, 葛贤坤, 陈东东, 郭磊. 基于局部相互作用理论的侵彻弹头部形状优化及仿真[J]. 爆炸与冲击, 2017, 37(4): 611-620. doi: 10.11883/1001-1455(2017)04-0611-10
引用本文: 邓佳杰, 张先锋, 葛贤坤, 陈东东, 郭磊. 基于局部相互作用理论的侵彻弹头部形状优化及仿真[J]. 爆炸与冲击, 2017, 37(4): 611-620. doi: 10.11883/1001-1455(2017)04-0611-10
Deng Jiajie, Zhang Xianfeng, Ge Xiankun, Chen Dongdong, Guo Lei. Nose-shape optimization and simulation of projectiles penetrating into concrete target based on local interaction theory[J]. Explosion And Shock Waves, 2017, 37(4): 611-620. doi: 10.11883/1001-1455(2017)04-0611-10
Citation: Deng Jiajie, Zhang Xianfeng, Ge Xiankun, Chen Dongdong, Guo Lei. Nose-shape optimization and simulation of projectiles penetrating into concrete target based on local interaction theory[J]. Explosion And Shock Waves, 2017, 37(4): 611-620. doi: 10.11883/1001-1455(2017)04-0611-10

基于局部相互作用理论的侵彻弹头部形状优化及仿真

doi: 10.11883/1001-1455(2017)04-0611-10
基金项目: 

爆炸冲击防灾减灾国家重点实验室(解放军理工大学)开放基金项目 DPMEIKF201405

详细信息
    作者简介:

    邓佳杰(1990-),男,博士研究生

    通讯作者:

    张先锋,lynx@njust.edu.cn

  • 中图分类号: O385

Nose-shape optimization and simulation of projectiles penetrating into concrete target based on local interaction theory

  • 摘要: 以局部相互作用理论为基础,引入与弹体头部形状相关的开坑计算方法和归一化弹体头部形状方程,给出了任意头部形状弹体侵彻混凝土深度的计算模型。利用最大侵深法,得到了无量纲头部形状控制参数表达式及经典变分头部形状优化设计方法。理论计算及弹靶分离仿真模拟计算结果与实验结果吻合较好。研究结果表明:弹体头部相对半径较小时,球头锥形和球头卵形弹体优化后得到的头部形状分别为尖头锥形和尖头卵形;优化截头弹体的侵彻深度大于优化尖头弹体,而优化截锥形弹体的侵彻深度最大;弹体头部形状对弹体侵彻过载的影响显著,优化弹体头部形状可以有效地提高侵彻深度。
  • 图  1  任意头部形状弹体局部相互作用模型

    Figure  1.  Local interaction model of projectile with arbitrary nose-shape

    图  2  任意头部形状弹体结构示意

    Figure  2.  Structure diagram of projectile with arbitrary nose-shape

    图  3  弹靶相互作用区域示意

    Figure  3.  Interaction region between projectile and target

    图  4  不同头部形状弹体侵彻混凝土的局部相互作用模型计算结果与实验数据对比

    Figure  4.  Comparison of local interaction model calculation with experimental results for projectiles with different nose shapes penetrating into concrete

    图  5  典型回转形弹体头部形状控制参数最优值

    Figure  5.  Optimized control parameters of nose-shape for typical revolution projectiles

    图  6  相对球头半径与头部形状控制参数的变化关系

    Figure  6.  Control parameter of nose-shape vs. normalized spherical radius

    图  7  最优化弹体头部形状轮廓

    Figure  7.  Optimized nose-shape of projectile

    图  8  基于弹靶分离方法的弹体模型

    Figure  8.  Projectile model based on projectile-target separation method

    图  9  弹体侵彻混凝土的模拟结果与实验数据对比

    Figure  9.  Comparison of simulation with experiment for projectiles penetrating into concrete

    图  10  优化头部形状弹体模型

    Figure  10.  Numerical simulation model of optimal projectiles

    图  11  不同头部形状弹体速度与侵彻深度的关系

    Figure  11.  Penetration velocity vs. penetration depth for different optimal projectiles

    图  12  不同头部形状弹体以800 m/s的初速度侵彻混凝土时加速度和瞬时侵彻深度时程曲线

    Figure  12.  Curves of acceleration and instantaneous penetration depth for projectiles with different nose shapes penetrating into concrete at an initial velocity of 800 m/s

    表  1  弹体模型参数及混凝土材料参数

    Table  1.   Parameters for projectile geometry model and concrete material

    弹体头部形状 实验编号 弹体模型参数 混凝土材料参数
    m/kg dp/mm 弹体头形方程 σc/MPa ρt/(kg·m-3)
    尖卵形 1[24] 4.43 57.0 Φ=[228.02-(x-110.4)2]1/2-199.5 35 2 450
    2[25] 12.90 76.2 Φ=[228.62-(x-126.4)2]1/2-190.5 39 2 300
    截卵形 3[26] 0.28 25.3 Φ=[90.12-(x-33.2)2]1/2-83.8 40 2 300
    尖锥形 4[27] 0.08 10.0 Φ=x tan22.5° 44 2 200
    5[27] 0.08 10.0 Φ=x 44 2 200
    下载: 导出CSV
  • [1] Bunimovich A I, Dubinskii A V. Mathematical models and methods of localized interaction theory[M]. Singapore: World Scientific Publishing, 1995.
    [2] Ben-Dor G, Dubinsky A, Elperin T. Applied high-speed plate penetration dynamics[M]. Netherlands: Springer, 2006.
    [3] Ben-Dor G, Dubinsky A, Elperin T. High-speed penetration dynamics: Engineering models and methods[M]. Singapore: World Scientific Publishing, 2013.
    [4] Ben-Dor G, Dubinsky A, Elperin T. High-speed penetration modeling and shape optimization of the projectile penetrating into concrete shields[J]. Mechanics Based Design of Structures and Machines, 2009, 37(4):538-549. doi: 10.1080/15397730903272830
    [5] Ben-Dor G, Dubinsky A, Elperin T. Localized interaction models with non-constant friction for rigid penetrating impactors[J]. International Journal of Solids and Structures, 2007, 44(7):2593-2607. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ026134457/
    [6] Ben-Dor G, Dubinsky A, Elperin T. Numerical solution for shape optimization of an impactor penetrating into a semi-infinite target[J]. Computers & Structures, 2003, 81(1):9-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=971c54e8a853179f371f74951cb55a0b
    [7] Ben-Dor G, Dubinsky A, Elperin T. Shape optimization of impactor penetrating into concrete or limestone targets[J]. International Journal of Solids and Structures, 2003, 40(17):4487-4500. doi: 10.1016/S0020-7683(03)00212-9
    [8] Ben-Dor G, Dubinsky A, Elperin T. Optimization of the nose shape of an impactor against a semi-infinite FRP laminate[J]. Composites Science and Technology, 2002, 62(5):663-667. doi: 10.1016/S0266-3538(02)00006-4
    [9] Ben-Dor G, Dubinsky A, Elperin T. Optimization of layered shields with a given areal density[J]. International Journal of Fracture, 1998, 91(1):L9-L14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5f80f37c9160d323597558e848e52019
    [10] Yakunina G E. The dynamics of pyramidal bodies within the framework of the local interaction model[J]. Journal of Applied Mathematics and Mechanics, 2003, 67(1):11-23. http://cn.bing.com/academic/profile?id=5f03b377af7205b50e3688ccdd3dab47&encoded=0&v=paper_preview&mkt=zh-cn
    [11] Yakunina G Y. The three-dimensional motion of optimalpyramidal bodies[J]. Journal of Applied Mathematics and Mechanics, 2005, 69(2):234-243. doi: 10.1016/j.jappmathmech.2005.03.009
    [12] Yakunina G. Optimum three-dimensional hypersonic bodies within the framework of a local interaction model[C]//10th AIAA/NAL-NASDA-ISAS International Space Planes and Hypersonic Systems and Technologies Conference, 2001: 11.
    [13] Yakunna G Y. Effects of sliding friction on the optimal 3D-nose geometry of rigid rods penetrating media[J]. Optimization and Engineering, 2005, 6(3):315-338. doi: 10.1007/s11081-005-1742-6
    [14] Ragnedda F, Serra M. Optimum shape of high speed impactor for concrete targets using PSOA heuristic[J]. Engineering, 2010, 2(4):257-262. doi: 10.4236/eng.2010.24035
    [15] Jones S E, Rule W K. On the optimal nose geometry for a rigid penetrator, including the effects of pressure-dependent friction[J]. International Journal of Impact Engineering, 2000, 24(4):403-415. doi: 10.1016/S0734-743X(99)00157-8
    [16] Chen X W, Li Q M. Deep penetration of a non-deformable projectile with different geometrical characteristics[J]. International Journal of Impact Engineering, 2002, 27(6):619-637. doi: 10.1016/S0734-743X(02)00005-2
    [17] 皮爱国, 黄风雷.基于变分法原理的侵彻弹体头部形状优化设计[J].弹箭与制导学报, 2007, 27(4):126-130. doi: 10.3969/j.issn.1673-9728.2007.04.037

    Pi Aiguo, Huang Fenglei. Based on variation method for the shape optimization of penetrator nose shape[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2007, 27(4):126-130. doi: 10.3969/j.issn.1673-9728.2007.04.037
    [18] 刘坚成, 黄风雷, 皮爱国, 等.异型头部弹体增强侵彻性能机理研究[J].爆炸与冲击, 2014, 34(4):409-414. doi: 10.11883/1001-1455(2014)04-0409-06

    Liu Jiancheng, Huang Fenglei, Pi Aiguo, et al. On enhanced penetration performance of modified nose projectiles[J]. Explosion and Shock Waves, 2014, 34(4):409-414. doi: 10.11883/1001-1455(2014)04-0409-06
    [19] Liu J, Pi A, Huang F. Penetration performance of double-ogive-nose projectiles[J]. International Journal of Impact Engineering, 2015, 84:13-23. doi: 10.1016/j.ijimpeng.2015.05.003
    [20] Forrestal M J, Tzou D Y. A spherical cavity-expansion penetration model for concrete targets[J]. International Journal of Solids and Structures, 1997, 34(31):4127-4146. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=15bb10f7d851f075588b20216506d45c
    [21] Luk V K, Forrestal M J. Penetration into semi-infinite reinforced-concrete targets with spherical and ogival nose projectiles[J]. International Journal of Impact Engineering, 1987, 6(4):291-301. doi: 10.1016/0734-743X(87)90096-0
    [22] Li Q M, Chen X W. Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile[J]. International Journal of Impact Engineering, 2003, 28(1):93-116. doi: 10.1016/S0734-743X(02)00037-4
    [23] Teland J A, Sjøl H. Penetration into concrete by truncated projectiles[J]. International Journal of Impact Engineering, 2004, 30(4):447-464. doi: 10.1016/S0734-743X(03)00073-3
    [24] 黄民荣.刚性弹体对混凝土靶的侵彻与贯穿机理研究[D].南京: 南京理工大学, 2011. http: //cdmd.cnki.com.cn/Article/CDMD-10288-1012320967.htm
    [25] Forrestal M J, Frew D J, Hickerson J P, et al. Penetration of concrete targets with deceleration-time measurements[J]. International Journal of Impact Engineering, 2003, 28(5):479-497. doi: 10.1016/S0734-743X(02)00108-2
    [26] Qian L, Yang Y, Tong L. A semi-analytical model for truncated-ogive-nose projectiles penetration into semi-infinite concrete targets[J]. International Journal of Impact Engineering, 2000, 24(9):947-955. doi: 10.1016/S0734-743X(00)00008-7
    [27] 石志勇, 汤文辉, 赵国民, 等.混凝土靶中侵彻深度的相似性研究[J].弹道学报, 2005, 17(1):62-66. doi: 10.3969/j.issn.1004-499X.2005.01.012

    Shi Zhiyong, Tang Wenhui, Zhao Guomin, et al. Similarity study of the penetration depth for the concrete targets[J]. Journal of Ballistics, 2005, 17(1):62-66. doi: 10.3969/j.issn.1004-499X.2005.01.012
    [28] Ben-Dor G, Dubinsky A, Elperin T. Shape optimization of high-speed penetrators: A review[J]. Central European Journal of Engineering, 2012, 2(4):473-482. http://cn.bing.com/academic/profile?id=52a17f483d9239a276eed9a7f8370cd5&encoded=0&v=paper_preview&mkt=zh-cn
    [29] Forrestal M J, Tzou D Y. A spherical cavity-expansion penetration model for concrete targets[J]. International Journal of Solids & Structures, 1997, 34(31):4127-4146. http://cn.bing.com/academic/profile?id=9f6cbc41cc8e41622e2eccbe35f1dfdd&encoded=0&v=paper_preview&mkt=zh-cn
    [30] 何涛, 文鹤鸣.卵形钢弹对铝合金靶板侵彻问题的数值模拟[J].高压物理学报, 2006, 20(4):408-414. doi: 10.3969/j.issn.1000-5773.2006.04.012

    He Tao, Wen Heming. Numerical simulations of the penetration of aluminum targets by ogive-nosed steel projectiles[J]. Chinese Journal of High Pressure Physics, 2006, 20(4):408-414. doi: 10.3969/j.issn.1000-5773.2006.04.012
    [31] Fang Q, Kong X, Hong J, et al. Prediction of projectile penetration and perforation by finite cavity expansion method with the free-surface effect[J]. Acta Mechanica Solida Sinica, 2014, 27(6):597-611. doi: 10.1016/S0894-9166(15)60005-2
    [32] Li Q M, Flores-Johnson E A. Hard projectile penetration and trajectory stability[J]. International Journal of Impact Engineering, 2011, 38(10):815-823. doi: 10.1016/j.ijimpeng.2011.05.005
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  4884
  • HTML全文浏览量:  1282
  • PDF下载量:  420
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-04
  • 修回日期:  2016-03-14
  • 刊出日期:  2017-07-25

目录

    /

    返回文章
    返回