磁场对激波冲击R22重气柱作用过程影响的数值模拟

林震亚 张焕好 陈志华 刘迎

林震亚, 张焕好, 陈志华, 刘迎. 磁场对激波冲击R22重气柱作用过程影响的数值模拟[J]. 爆炸与冲击, 2017, 37(4): 748-758. doi: 10.11883/1001-1455(2017)04-0748-11
引用本文: 林震亚, 张焕好, 陈志华, 刘迎. 磁场对激波冲击R22重气柱作用过程影响的数值模拟[J]. 爆炸与冲击, 2017, 37(4): 748-758. doi: 10.11883/1001-1455(2017)04-0748-11
Lin Zhenya, Zhang Huanhao, Chen Zhihua, Liu Ying. Influence of magnetic field on interaction of shock wave with R22 heavy gas column[J]. Explosion And Shock Waves, 2017, 37(4): 748-758. doi: 10.11883/1001-1455(2017)04-0748-11
Citation: Lin Zhenya, Zhang Huanhao, Chen Zhihua, Liu Ying. Influence of magnetic field on interaction of shock wave with R22 heavy gas column[J]. Explosion And Shock Waves, 2017, 37(4): 748-758. doi: 10.11883/1001-1455(2017)04-0748-11

磁场对激波冲击R22重气柱作用过程影响的数值模拟

doi: 10.11883/1001-1455(2017)04-0748-11
基金项目: 

国家自然科学基金项目 11272156

中国博士后科学基金项目 2015M571757

详细信息
    作者简介:

    林震亚(1990-),男,博士

    通讯作者:

    张焕好,122488989@qq.com

Influence of magnetic field on interaction of shock wave with R22 heavy gas column

  • 摘要: 为研究平面入射激波与磁化R22重质圆形气柱的作用过程,首先通过数值方法得到了不同初始条件下激波诱导R22气柱的Kelvin-Helmholtz (KH)及Richtmyer-Meshkov (RM)不稳定性导致的重气柱变形过程,并详细讨论了不同情况下透射激波在气柱内聚焦诱导射流的过程;然后在加入磁场的情况下,采用CTU+CT算法进行数值模拟,以保证数值结果满足任意时刻磁场的散度为零。计算结果表明:磁场对激波诱导R22气柱不稳定性具有抑制作用;法向磁场和流向磁场都可以很好地抑制RM不稳定性;对于KH不稳定性,法向磁场的控制效果更好,不仅可以抑制界面上涡串的卷起,还可以阻止主涡的发展,而流向磁场做不到后者;磁场对射流影响不大,射流处的磁能量可以一定程度上抑制射流的衰减,同时法向磁场可以减小聚焦时压力及速度峰值。
  • 图  1  计算模型

    Figure  1.  Computational model

    图  2  无磁场情况下,激波与R22气柱相互作用过程的计算纹影(上)与文献[21]实验结果(下)的对比

    Figure  2.  Numerical results of the interaction of shock wave with the R22 air column in this paper (upper row), and the experimental result in reference [21] (lower row).

    图  3  后期激波与R22气柱作用过程计算纹影

    Figure  3.  Numerical results of the interaction of shock wave with the R22 air column in later period.

    图  4  B=0.01T时不同磁场方向对激波与R22气柱作用过程的影响

    Figure  4.  Numerical results of the interaction process of shock wave and R22 air column when B=0.01T

    图  5  初始磁场沿y轴正方向时入射激波诱导射流产生过程

    Figure  5.  Generation process of jet induced by incident shock wave when initial magnetic field is along y axis

    图  6  初始磁场沿x轴正方向时入射激波诱导射流产生过程

    Figure  6.  Generation process of jet induced by incident shock wave when initial magnetic field is along x axis

    图  7  后期激波与R22气柱作用过程密度纹影

    Figure  7.  Numerical results of interaction process of shock wave with R22 air column in later period

    图  8  初始磁场沿y轴正方向时磁压力及磁能量的分布(每幅子图中,左上为磁压力,左下为磁能量,中间和右侧分别为磁压力在xy方向的分量)

    Figure  8.  Magnetic pressure and magnetic energy when initial magnetic field is along y axis (upper left: magnetic pressure; lower left: magnetic energy; middle: magnetic pressure along x axis; right: magnetic pressure along y axis)

    图  9  初始磁场沿y轴正方向时的磁压力及磁能量分布

    Figure  9.  Distribution of magnetic pressure and magnetic energy when initial magnetic field is along y axis

    图  10  初始磁场沿x轴正方向时磁压力及磁能量分布(每幅子图中,左上为磁压力,左下为磁能量,中间和右侧分别为磁压力在xy方向的分量)

    Figure  10.  Magnetic pressure and magnetic energy when initial magnetic field is along x axis (upper left: magnetic pressure; lower left: magnetic energy; middle: magnetic pressure along x axis; right: magnetic pressure along y axis)

    图  11  初始磁场沿x轴正方向时边界处磁压力矢量图

    Figure  11.  Vector diagram of magnetic pressure on the interface when initial magnetic field is along x axis

    图  12  初始磁场为x轴正方向时磁压力及磁能量分布

    Figure  12.  Distribution of magnetic pressure and magnetic energy when initial magnetic field is along x axis

    表  1  气体参数

    Table  1.   Gas parameters used in this paper

    气体比热比 密度/(kg·m-3) 摩尔质量/(g·mol-1) 当地声速/(m·s-1)
    R22 1.185 3.69 86.468 183
    Air 1.400 1.18 29.000 345
    下载: 导出CSV
  • [1] Meyer K A, Blewett P J. Numerical investigation of the stability of a shock-accelerated interface between two fluids[J]. Physics of Fluids, 1972, 15(5):753-759. doi: 10.1063/1.1693980
    [2] Zhang Q, Sohn S I. An analytical nonlinear theory of Richtmyer-Meshkov instability[J]. Physics Letters A, 1996, 212(3):149-155. doi: 10.1016/0375-9601(96)00021-7
    [3] Anuchina N N, Volkov V I, Gordeychuk V A, et al. Numerical simulations of Rayleigh-Taylor and Richtmyer-Meshkov instability using MAH-3 code[J]. Journal of Computational and Applied Mathematics, 2004, 168(1/2):11-20. http://cn.bing.com/academic/profile?id=faf4cdc7512f18529484c6b45fe5a4cc&encoded=0&v=paper_preview&mkt=zh-cn
    [4] Ruev G A, Fedorov A V, Fomin V M. Development of the Richtmyer-Meshkov instability upon interaction of a diffusion mixing layer of two gases with shock waves[J]. Journal of Applied Mechanics and Technical Physics, 2005, 46(3):307-314. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=33cb95fc5314ec07df6946d2ba77037c
    [5] Niederhaus J H J, Greenough J A, Oakley J G, et al. A computational parameter study for the three-dimensional shock-bubble interaction[J]. Journal of Fluid Mechanics, 2008, 594:85-124. http://cn.bing.com/academic/profile?id=412d738c3ad78e224720d2313a46ddb5&encoded=0&v=paper_preview&mkt=zh-cn
    [6] Thornber B, Drikakis D, Youngs D. Large-eddy simulation of multi-component compressible turbulent flows using high resolution methods[J]. Computers and Fluids, 2008, 37(7):867-876. doi: 10.1016/j.compfluid.2007.04.009
    [7] Hejazialhosseini B, Rossinelli D, Bergdorf M, et al. High order finite volume methods on wavelet-adapted grids with local time-stepping on multicore architectures for the simulation of shock-bubble interactions.[J]. Journal of Computational Physics, 2010, 229(22):8364-8383. doi: 10.1016/j.jcp.2010.07.021
    [8] Schilling O, Latini M. High-order weno simulations of three-dimensional reshocked Richtmyer-Meshkov instability to late times: Dynamics, dependence on initial conditions, and comparisons to experimental data[J]. Acta Mathematica Scientia, 2010, 30(2):595-620. doi: 10.1016/S0252-9602(10)60064-1
    [9] Tian B, Shen W, Jiang S, et al. A global arbitrary Lagrangian-Eulerian method for stratified Richtmyer-Meshkov instability[J]. Computers and Fluids, 2011, 46(1):113-121. http://cn.bing.com/academic/profile?id=23c103f293bda4adebcd35feaf542796&encoded=0&v=paper_preview&mkt=zh-cn
    [10] Shankar S K, Kawai S, Lele S K. Two-dimensional viscous flow simulation of a shock accelerated heavy gas cylinder[J]. Physics of Fluids, 2011, 23(2):131. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8036dad7385696611c022a99cb5bc7b7
    [11] Bailie C, Mcfarland J A, Greenough J A, et al. Effect of incident shock wave strength on the decay of Richtmyer-Meshkov instability-introduced perturbations in the refracted shock wave[J]. Shock Waves, 2012, 22(6):511-519. doi: 10.1007/s00193-012-0382-y
    [12] Chandrasekhar S. Hydrodynamic and hydromagnetic stability[M]. Dover Publications, 1961.
    [13] Wheatley V, Pullin D I, Samtaney R. Stability of an impulsively accelerated density interface in magnetohydrodynamics[J]. Physical Review Letters, 2005, 95(12):125002. doi: 10.1103/PhysRevLett.95.125002
    [14] Wheatley V, Samtaney R, Pullin D I. The magnetohydrodynamic Richtmyer-Meshkov instability: The transverse field case[C]//18th Australasian Fluid Mechanics Conference. Australasian Fluid Mechanics Society, 2012.
    [15] Khan M, Mandal L, Banerjee R, et al. Development of Richtmyer-Meshkov and Rayleigh-Taylor instability in presence of magnetic field[J]. Nuclear Instruments & Methods in Physics Research A, 2011, 653(1):2-6. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1101.3860
    [16] Cao J, Wu Z, Ren H, et al. Effects of shear flow and transverse magnetic field on Richtmyer-Meshkov instability[J]. Physics of Plasmas, 2008, 15(4):445-514. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c65ffb22c021910d193687d3d30e6647
    [17] Shin M S, Stone J M, Snyder G F. The magnetohydrodynamics of shock-cloud interaction in three dimensions[J]. Astrophysical Journal, 2008, 680(1):336-348. doi: 10.1086/529160
    [18] 李源, 罗喜胜.黏性、表面张力和磁场对Rayleigh-Taylor不稳定性气泡演化影响的理论分析[J].物理学报, 2014, 2(8):277-285. http://d.old.wanfangdata.com.cn/Periodical/wlxb201408037

    Li Yuan, Luo Xisheng. Theoretical analysis of effects of viscosity, surface tension, and magnetic field on the bubble evolution of Rayleigh-Taylor instability[J]. Acta Physica Sinica, 2014, 2(8):277-285. http://d.old.wanfangdata.com.cn/Periodical/wlxb201408037
    [19] Saltzman J. An unsplit 3D upwind method for hyperbolic conservation laws[J]. Journal of Computational Physics, 1994, 115(1):153-168. doi: 10.1006/jcph.1994.1184
    [20] Gardiner T A, Stone J M. An unsplit Godunov method for ideal MHD via constrained transport[J]. Journal of Computational Physics, 2005, 205(2):509-539. doi: 10.1016/j.jcp.2004.11.016
    [21] Haas J, Sturtevant B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities[J]. Journal of Fluid Mechanics, 1987, 181(1):41-76. http://cn.bing.com/academic/profile?id=f857b28c6f0747bace4c970ef14bb4aa&encoded=0&v=paper_preview&mkt=zh-cn
    [22] Chapman S, Cowling T G. The mathematical theory of non-uniform gases[M]. London: Cambridge University Press, 1970.
    [23] 沙莎, 陈志华, 薛大文.激波冲击R22重气柱所导致的射流与混合研究[J].物理学报, 2013, 62(14):144701. doi: 10.7498/aps.62.144701

    Sha Sha, Chen Zhihua, Xue Dawen. The generation of jet and mixing induced by the interaction of shock wave with R22 cylinder[J]. Acta Physica Sinica, 2013, 62(14):144701. doi: 10.7498/aps.62.144701
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  4335
  • HTML全文浏览量:  1336
  • PDF下载量:  215
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-24
  • 修回日期:  2016-08-23
  • 刊出日期:  2017-07-25

目录

    /

    返回文章
    返回