刚性源项处理方法在爆震模拟中的应用对比

邓利 马虎 武晓松 周长省

邓利, 马虎, 武晓松, 周长省. 刚性源项处理方法在爆震模拟中的应用对比[J]. 爆炸与冲击, 2018, 38(1): 155-163. doi: 10.11883/bzycj-2016-0150
引用本文: 邓利, 马虎, 武晓松, 周长省. 刚性源项处理方法在爆震模拟中的应用对比[J]. 爆炸与冲击, 2018, 38(1): 155-163. doi: 10.11883/bzycj-2016-0150
DENG Li, MA Hu, WU Xiaosong, ZHOU Changsheng. Comparison of different methods for source terms in detonation simulation[J]. Explosion And Shock Waves, 2018, 38(1): 155-163. doi: 10.11883/bzycj-2016-0150
Citation: DENG Li, MA Hu, WU Xiaosong, ZHOU Changsheng. Comparison of different methods for source terms in detonation simulation[J]. Explosion And Shock Waves, 2018, 38(1): 155-163. doi: 10.11883/bzycj-2016-0150

刚性源项处理方法在爆震模拟中的应用对比

doi: 10.11883/bzycj-2016-0150
基金项目: 

国家自然科学基金项目 51376091

江苏省自然科学基金项目 BK20150782

详细信息
    作者简介:

    邓利(1991—),男,博士研究生,dengli_njust@126.com

  • 中图分类号: O381

Comparison of different methods for source terms in detonation simulation

  • 摘要: 为解决爆震燃烧模拟中出现的刚性问题,对处理刚性源项问题常见的一步法、逼近法、拟稳态逼近法(α qusai steady state, αQSS)和点隐方法进行对比,从稳定性等方面分析源项处理方法应满足的时间步长要求,并探索各方法之间的联系以及适应化学反应特征变化的能力,进一步通过球头激波诱导燃烧算例比较每种方法的计算效率。理论分析和数值计算表明:一步法在积分刚性源项时,积分步长需小于或等于2倍最短反应特征时间,而逼近法、αQSS法和点隐方法对时间步长取值没有影响;αQSS法可根据化学反应特征的变化自动调整α值和时间步长,适用范围较广,而一步法和逼近法则是αQSS方法的特例。点隐等隐式方法在求解数学意义上的刚性问题时稳定性很好,但计算效率较低。相比而言,αQSS法在计算稳定性和适应化学反应变化方面都具有良好的性能,且针对激波诱导燃烧算例,αQSS法消耗的CPU时间仅为点隐方法的一半,是处理刚性源项较好的选择。
  • 图  1  激波诱导的周期振荡燃烧实验阴影图[18]

    Figure  1.  Experimental shadowgraph of periodically oscillating shock-induced combustion[18]

    图  2  一步法处理组分质量分数随轴线分布曲线

    Figure  2.  Mass fraction distribution of species along the axis by one step method

    3(a)  αQSS方法处理组分质量分数随轴线分布曲线

    3(a).  Mass fraction distribution of species along the axis by αQSS method

    3(b)  点隐法处理组分质量分数随轴线分布曲线

    3(b).  Mass fraction distribution of species along the axis by point implicit method

    3(c)  逼近法处理组分质量分数随轴线分布曲线

    3(c).  Mass fraction distribution of species along the axis by asymptotic method

    表  1  实验数据与理论模型结果对比

    Table  1.   Comparison of experimental and theoretical data

    方法 f/Hz
    Ma=4.48 Ma=4.79
    实验 425.0 712.0
    αQSS 424.0 721.5
    点隐法 426.1 725.7
    一步法 424.1 721.5
    逼近法 425.2 721.5
    下载: 导出CSV

    表  2  不同源项处理方法消耗CPU时间

    Table  2.   The CPU time in different stiff source term methods

    方法 CPU time/s
    αQSS 77 590
    点隐法 130 007
    一步法 154 774
    逼近法 62 372
    下载: 导出CSV
  • [1] 刘君, 周松柏, 徐春光.超声速流动中燃烧现象的数值模拟方法及应用[M].长沙:国防科技大学出版社, 2008:76-79.
    [2] BUSSING T R A. A finite volume method for the Navier-Stokes equations with finite rate chemistry[D]. Cambridge: Massachusetts Institute of Technology, 1985. http: //ci. nii. ac. jp/ncid/BB03917781
    [3] BUSSING T R A, Murman E M. Finite-volume method for the calculation of compressible chemically reacting flows[J]. AIAA Journal, 1988, 26(9):1070-1078. doi: 10.2514/3.10013
    [4] ZHONG X. Additive semi-implicit Runge-Kutta methods for computing high-speed non-equilibrium reactive flows[J]. Journal of Computational Physics, 1996, 128(1):19-31. doi: 10.1006/jcph.1996.0193
    [5] ROSENBROCK H H. Some general implicit processes for the numerical solution of differential equations[J]. The Computer Journal, 1963, 5(4):329-330. doi: 10.1093/comjnl/5.4.329
    [6] LEVEQUE R J, YEE H C. A study of numerical methods for hyperbolic conservation laws with stiff source terms[J]. Journal of Computational Physics, 1990, 86(1):187-210. doi: 10.1016/0021-9991(90)90097-K
    [7] ORAN E S, BORIS J P. Numerical simulation of reactive flow[M]. Cambridge: Cambridge University Press, 2005:114-158.
    [8] YOUNG T R, BORIS J P. A numerical technique for solving stiff ordinary differential equations associated with the chemical kinetics of reactive-flow problems[J]. The Journal of Physical Chemistry, 1977, 81(25):2424-2427. doi: 10.1021/j100540a018
    [9] CHIANG T, HOFFMANN K. Determination of computational time step for chemically reacting flows[C]//Proceedings of AIAA 20th Fluid Dynamics, Plasma Dynamics and Laser Conference. Buffalo, New York, USA, 1989.
    [10] MOTT D R, ORAN E S, VAN L B. A quasi-steady-state solver for the stiff ordinary differential equations of reaction kinetics[J]. bJournal of Computational Physics, 2000, 164(2):407-428. doi: 10.1006/jcph.2000.6605
    [11] MOTT D R, ORAN E S. CHEMEQ2: A solver for the stiff ordinary differential equations of chemical kinetics[R]. Naval Research Lab, Washington D C, 2001.
    [12] 刘瑜. 化学非平衡流的计算方法研究及其在激波诱导燃烧现象模拟中的应用[D]. 长沙: 国防科技大学, 2008. http: //cdmd. cnki. com. cn/Article/CDMD-90002-2009213254. htm

    LIU Yu. Investigations into numerical methods of chemical non-equilibrium flow and its application to simulation of shock-induced combustion phenomenon[D]. Changsha: National University of Defense Technology, 2008. http: //cdmd. cnki. com. cn/Article/CDMD-90002-2009213254. htm
    [13] 刘君, 张涵信, 高树椿.一种新型的计算化学非平衡流动的解耦方法[J].国防科技大学学报, 2000, 22(5):19-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gfkjdxxb200005005

    LIU Jun, ZHANG Hanxin, GAO Shuchun. A new uncoupled method for numerical simulation of non-equilibrium flow[J]. Journal of National University of Defense Technology, 2000, 22(5):19-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gfkjdxxb200005005
    [14] 刘世杰, 林志勇, 孙明波, 等.采用不同化学反应源项处理方法的胞格爆轰数值研究[J].国防科技大学学报, 2010, 32(5):1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gfkjdxxb201005001

    LIU Shijie, LIN Zhiyong, SUN Mingbo, et al. Numerical simulation of cellular detonation using different chemical reaction source term methods[J]. Journal of National University of Defense Technology, 2010, 32(5):1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gfkjdxxb201005001
    [15] JACHIMOWSKI C J. An analytical study of the hydrogen-air reaction mechanism with application to scramjet combustion[R]. NASA TechnicaI Paper 2791, 1988.
    [16] 潘沙. 高超声速气动热数值模拟方法及大规模并行计算研究[D]. 长沙: 国防科技大学, 2010. http: //cdmd. cnki. com. cn/Article/CDMD-90002-2010271147. htm

    PAN Sha. Hypersonic aerothermal numerical simulation method and massive parallel computation research[D]. Changsha: National University of Defense Technology, 2010. http: //cdmd. cnki. com. cn/Article/CDMD-90002-2010271147. htm
    [17] TORO E F. Riemann solvers and numerical methods for fluid dynamics: A practical introduction[M]. Springer Science & Business Media, 2009: 531-542.
    [18] LEHR H F. Experiments on shock-induced combustion[J]. Astronautica Acta, 1972, 17:589-597. https://www.researchgate.net/publication/279938305_Experiments_on_shock-induced_combustion
    [19] MCVEY J B, TOONG T Y. Mechanism of instabilities of exothermic hypersonic blunt-body flows[J]. Combustion Science and Technology, 1971, 3(2):63-76. doi: 10.1080/00102207108952273
    [20] CHOI J Y, JEUNG I S, YOON Y. Computational fluid dynamics algorithms for unsteady shock-induced combustion: Part 1: Validation[J]. AIAA Journal, 2000, 38(7):1179-1187. doi: 10.2514/2.1112
    [21] 刘世杰, 孙明波, 林志勇, 等.钝头体激波诱导振荡燃烧现象的数值模拟[J].力学学报, 2010, 42(4):597-606. doi: 10.6052/0459-1879-2010-4-lxxb2010-086

    LIU Shijie J, SUN Mingbo, LIN Zhiyong, et al. Numerical research on blunt body shock-induced oscillation combustion phenomenon[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(4):597-606. doi: 10.6052/0459-1879-2010-4-lxxb2010-086
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  5238
  • HTML全文浏览量:  1696
  • PDF下载量:  175
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-26
  • 修回日期:  2016-09-18
  • 刊出日期:  2018-01-25

目录

    /

    返回文章
    返回