材料超高温动态拉伸SHTB实验方法的有效性分析

李鹏辉 郭伟国 刘开业 王建军 谭学明

李鹏辉, 郭伟国, 刘开业, 王建军, 谭学明. 材料超高温动态拉伸SHTB实验方法的有效性分析[J]. 爆炸与冲击, 2018, 38(2): 426-436. doi: 10.11883/bzycj-2016-0259
引用本文: 李鹏辉, 郭伟国, 刘开业, 王建军, 谭学明. 材料超高温动态拉伸SHTB实验方法的有效性分析[J]. 爆炸与冲击, 2018, 38(2): 426-436. doi: 10.11883/bzycj-2016-0259
LI Penghui, GUO Weiguo, LIU Kaiye, WANG Jianjun, TAN Xueming. Validity analysis of materials' dynamic tensile SHTB experimental technique at ultrahigh temperature[J]. Explosion And Shock Waves, 2018, 38(2): 426-436. doi: 10.11883/bzycj-2016-0259
Citation: LI Penghui, GUO Weiguo, LIU Kaiye, WANG Jianjun, TAN Xueming. Validity analysis of materials' dynamic tensile SHTB experimental technique at ultrahigh temperature[J]. Explosion And Shock Waves, 2018, 38(2): 426-436. doi: 10.11883/bzycj-2016-0259

材料超高温动态拉伸SHTB实验方法的有效性分析

doi: 10.11883/bzycj-2016-0259
基金项目: 

国家自然科学基金项目 11372255

国家自然科学基金项目 11572261

详细信息
    作者简介:

    李鹏辉(1991—),男,硕士

    通讯作者:

    郭伟国, weiguo@nwpu.edu.cn

  • 中图分类号: O344.3

Validity analysis of materials' dynamic tensile SHTB experimental technique at ultrahigh temperature

  • 摘要: 针对高温拉伸分离式Hopkinson杆实验技术,通过数值模拟、实验验证以及几种典型材料的高温动态拉伸性能测试相结合的方法,对此实验技术中存在的几个关键问题进行了深入研究。结果表明:对于平板状钩挂式拉伸试样,通过标距段尺寸优化后,应力分布均匀,流动应力曲线与螺纹拉伸试样一致,且应力上升段后没有剧烈跳动;通过精确气动控制,在加载脉冲到来同时,可实现有效的试样快速同步组装和加载;当试样温度为1 200 ℃时,在冷加载杆与高温试样接触以及应力波加载试样的整个过程中,试样平均温度下降约1.3%,而加载杆端温升低于180 ℃。为了验证此实验技术,对3D打印TC4、镍基单晶高温合金DD6进行了最高温度约1 200 ℃时的高温动态拉伸力学性能实验测试。
  • 图  1  SHTB试样连接形式

    Figure  1.  Connection forms of SHTB specimen

    图  2  高温SHTB实验过程示意图

    Figure  2.  Schematic diagram of SHTB experimental process at high temperature

    图  3  高温SHTB实验装置示意图

    Figure  3.  Illustration of setup for high temperature SHTB experiment

    图  4  数值模拟流动应力曲线与输入曲线对比

    Figure  4.  Comparison of simulated flow stress curve with input curves

    图  5  钩挂式平板试样尺寸设计

    Figure  5.  Size design of hook joint flat specimen

    图  6  试样尺寸对流动应力曲线的影响

    Figure  6.  Effect of specimen size on flow stress curve

    图  7  钩挂式板状试样不同长宽比下应力和应变分布

    Figure  7.  Flat hook-joint specimen's stress and strain distribution at different ratios of length to width

    图  8  钩挂连接与螺纹连接数值模拟和实验结果对比

    Figure  8.  Comparison of numerical simulation and experimental results between hook joint and thread connection

    图  9  钛合金TC4弹性模量随温度变化

    Figure  9.  Elastic modulus of titanium alloy TC4 versus temperature

    图  10  冷接触时间示意图

    Figure  10.  Cold contact time

    图  11  冷接触时间测试

    Figure  11.  Cold contact time measurement

    图  12  热辐射和热对流过程沿宽度和厚度方向温度分布

    Figure  12.  Temperature distribution along width and thickness

    图  13  冷接触过程试样中线温度分布

    Figure  13.  Temperature distribution along center line of specimen during cold contact

    图  14  热辐射、热对流和热传导对标距段平均温度的影响

    Figure  14.  Effect of heat radiation, heat convection and heat conduction on average temperature

    图  15  标距段温度下降随试样初始温度变化

    Figure  15.  Average temperature of gage section drop versus specimen initial temperature

    图  16  不同加热温度引起的加载杆端温升

    Figure  16.  Temperature rise of loading bars caused by different heating temperatures

    图  17  典型材料的动态拉伸真实应力-应变曲线

    Figure  17.  Dynamic true tress versus true strain

    表  1  钛合金TC4弹性模量的变化幅度

    Table  1.   Variation of elastic modulus of titanium alloy TC4

    T/℃ |δE|/%
    Ref.[12] Ref.[13]
    100 0.5 1.0
    200 4.2 3.5
    300 6.0 10.1
    400 10.3 20.0
    500 22.9 37.0
    600 24.4 62.6
    700 28.0
    800 37.7
    下载: 导出CSV
  • [1] GILAT A, WU X. Elevated temperature testing with the torsional split Hopkinson bar[J]. Experimental Mechanics, 1994, 34(2):166-170. doi: 10.1007/BF02325713
    [2] 佟景伟, 高丛峰, 李鸿琦, 等.温度梯度对拉伸SHB试验误差的数值分析[J].爆炸与冲击, 2001, 21(4):277-281. http://www.bzycj.cn/CN/abstract/abstract10235.shtml

    TONG Jingwei, GAO Congfeng, LI Hongqi, et al. Numerical analysis on the error in the split Hopkinson tension bar test at temperature gradient[J]. Explosion and Shock Waves, 2001, 21(4):277-281. http://www.bzycj.cn/CN/abstract/abstract10235.shtml
    [3] 夏开文, 刘文彦, 唐志平.30CrMnSiA钢高温动态力学性质的实验研究[J].爆炸与冲击, 1998, 18(4):310-316. http://www.bzycj.cn/CN/abstract/abstract10422.shtml

    XIA Kaiwen, LIU Wenyan, TANG Zhiping. Experimental study of dynamic properties of 30CrMnSiA steel at high temperature[J]. Explosion and Shock Waves, 1998, 18(4):310-316. http://www.bzycj.cn/CN/abstract/abstract10422.shtml
    [4] ROSENBERG Z, DAWICKE D, STEADER E, et al. A new technique for heating specimens in split-Hopkinson-bar experiments using induction-coil heaters[J]. Experimental Mechanics, 1986, 26(3):275-278. doi: 10.1007/BF02320053
    [5] FRANTZ C E, FOLLANSBEE P S, WRIGHT W J. New experimental techniques with the split Hopkinson pressure bar[C]//8th International Conference on High Energy Rate Fabrication. 1984.
    [6] GUO W G, NEMAT-NASSER S. Flow stress of nitronic-50 stainless steel over a wide range of strain rates and temperatures[J]. Mechanics of Materials, 2006, 38(11):1090-1103. doi: 10.1016/j.mechmat.2006.01.004
    [7] 郭伟国.高导无氧铜在大变形、不同温度和不同应变率下的流动应力和本构模型[J].爆炸与冲击, 2005, 25(3):244-250. http://www.bzycj.cn/CN/abstract/abstract9341.shtml

    GUO Weiguo. Flow stress and constitutive model of OFHC Cu for large deformation, different temperatures and different strain rates[J]. Explosion and Shock Waves, 2005, 25(3):244-250. http://www.bzycj.cn/CN/abstract/abstract9341.shtml
    [8] 郭伟国, 朱泽, 曾志银, 等. 高温高应变率拉伸同步实验装置: ZL 2012 2 0438121. 0[P]. 2013-04-17.
    [9] LI Yulong, ZHANG Yongkang, XUE Pu. Study of similarity law for bird impact on structure[J]. Chinese Journal of Aeronautics, 2008, 21(6):512-517. doi: 10.1016/S1000-9361(08)60168-5
    [10] 陈滔, 李庆斌, 管俊峰, 等.霍普金森拉杆装置螺纹过渡段变形测量修正[J].工程力学, 2013, 30(7):276-281. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gclx201307043&dbname=CJFD&dbcode=CJFQ

    CHEN Tao, LI Qingbin, GUAN Junfeng, et al. Deformation measurement correction for the threaded connection and transition part utilizing SHTB[J]. Engineering Mechanics, 2013, 30(7):276-281. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gclx201307043&dbname=CJFD&dbcode=CJFQ
    [11] KLEPACZKO J R, RUSINEK A, RODRÍGUEZ-MARTÍNEZ J A, et al. Modelling of thermo-viscoplastic behaviour of DH-36 and Weldox 460-E structural steels at wide ranges of strain rates and temperatures, comparison of constitutive relations for impact problems[J]. Mechanics of Materials, 2009, 41(5):599-621. doi: 10.1016/j.mechmat.2008.11.004
    [12] 张树华.TC4、16Mn合金及Al2O3陶瓷的高温弹性模量[J].高压物理学报, 1995, 9(2):133-138. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gywl502.007&dbname=CJFD&dbcode=CJFQ

    ZHANG Shuhua. High temperature elastic moduli of TC4, 16Mn and Al2O3 ceramics[J]. Chinese Journal of High Pressure Physics, 1995, 9(2):133-138. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gywl502.007&dbname=CJFD&dbcode=CJFQ
    [13] JASTRZEBSKI Z D, KOMANDURI R. The nature and properties of engineering materials[M]. Wiley, 1975.
    [14] LI P H, GUO W G, HUANG W D, et al. Thermomechanical response of 3D laser-deposited Ti-6Al-4V alloy over a wide range of strain rates and temperatures[J]. Materials Science and Engineering: A, 2015, 647:34-42. doi: 10.1016/j.msea.2015.08.043
    [15] WANG J, GUO W G, LI P, et al. Dynamic tensile properties of a single crystal nickel-base superalloy at high temperatures measured with an improved SHTB technique[J]. Materials Science and Engineering: A, 2016, 670:1-8. doi: 10.1016/j.msea.2016.06.002
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  6165
  • HTML全文浏览量:  1910
  • PDF下载量:  295
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-24
  • 修回日期:  2017-01-18
  • 刊出日期:  2018-03-25

目录

    /

    返回文章
    返回