开敞空间液化天然气泄漏低温扩散及爆炸传播规律

任少云

任少云. 开敞空间液化天然气泄漏低温扩散及爆炸传播规律[J]. 爆炸与冲击, 2018, 38(4): 891-897. doi: 10.11883/bzycj-2016-0323
引用本文: 任少云. 开敞空间液化天然气泄漏低温扩散及爆炸传播规律[J]. 爆炸与冲击, 2018, 38(4): 891-897. doi: 10.11883/bzycj-2016-0323
REN Shaoyun. The leakage, low temperature diffusion and explosion of liquefied natural gas in open space[J]. Explosion And Shock Waves, 2018, 38(4): 891-897. doi: 10.11883/bzycj-2016-0323
Citation: REN Shaoyun. The leakage, low temperature diffusion and explosion of liquefied natural gas in open space[J]. Explosion And Shock Waves, 2018, 38(4): 891-897. doi: 10.11883/bzycj-2016-0323

开敞空间液化天然气泄漏低温扩散及爆炸传播规律

doi: 10.11883/bzycj-2016-0323
基金项目: 

武警学院国家自然科学基金培育项目 ZKJJPY201621

国家重点研发计划项目 2016YFC0800609

详细信息
    作者简介:

    任少云(1978-), 女, 博士, 副教授, 995292635.qq.com

  • 中图分类号: O382

The leakage, low temperature diffusion and explosion of liquefied natural gas in open space

  • 摘要: 低温可导致人员冻伤及物品脆裂,气体爆炸传播规律是爆炸演化过程和事故分析的基础。采用数值模拟方法,研究液化天然气大面积泄漏汽化过程、甲烷与空气混合过程及爆炸传播过程。结果表明:随着扩散距离的增大,低温区域的温度谷值升高,且升高趋势变缓;在距泄漏源中心110 m范围内,温度低于273 K;随着风速的增加,温度谷值呈线性下降;随着泄漏时间的延长,温度谷值降低,且下降趋势变缓;随着距泄漏中心距离的增加,爆炸后超压峰值先升高后降低;在距泄漏源中心200 m范围内,爆炸产生的高温会对人员造成伤害。
  • 图  1  计算域

    Figure  1.  Calculation domain

    图  2  网格验证

    Figure  2.  Grid verification

    图  3  甲烷体积分数和温度的数值计算结果与实验数据的对比

    Figure  3.  Comparison of methane volume fraction and temperature between calculation and experimental results

    图  4  扩散距离对低温区域的影响

    Figure  4.  Influence of diffusion distance on low temperature region

    图  5  风速对低温区域的影响

    Figure  5.  Influence of wind velocity on low temperature region

    图  6  泄露时间对低温区域的影响

    Figure  6.  Influence of leakage time on low temperature region

    图  7  甲烷体积分数-时间曲线及云图(监测点距地面1 m高

    Figure  7.  Methane's volume fraction-time curve and contour (Distance from monitoring point to the ground is 1 m)

    图  8  不同监测点的超压和温度随时间变化曲线

    Figure  8.  Overpressure and temperature vs. time at different distances away from leakage center

    图  9  不同位置的超压峰值和温度峰值变化趋势

    Figure  9.  Variation of peak overpressure and peak temperature with distances away from leakage center

    图  10  不同时刻点火爆炸压力和温度随时间变化曲线

    Figure  10.  Overpressure-time and temperature-time curves at different ignition times

    表  1  Burro 8和Burro 9中LNG泄漏扩散实验参数[8]

    Table  1.   Experimental parameters of LNG leakage in Burro 8 and Burro 9[8]

    实验 泄漏速率/(m3·min-1) 泄漏时间/s 2 m高处平均风速/(m·s-1) 环境温度/K 环境压力/kPa
    Burro 8 16.0 107 1.8 306.25 94.1
    Burro 9 18.4 79 5.7 308.55 94.0
    下载: 导出CSV
  • [1] ZHANG X, LI J, ZHU J, et al. Computational fluid dynamics study on liquefied natural gas dispersion with phase change of water[J]. International Journal of Heat and Mass Transfer, 2015, 91:347-354. doi: 10.1016/j.ijheatmasstransfer.2015.07.117
    [2] LUKETA-HANLIN A, KOOPMAN R P, ERMAK D L. On the application of computational fluid dynamics codes for liquefied natural gas dispersion[J]. Journal of Hazardous Materials, 2007, 140(3):504-517. doi: 10.1016/j.jhazmat.2006.10.023
    [3] 王卿权. LNG动力船舶燃料罐火灾、爆炸事故后果数值研究[D]. 大连: 大连海事大学, 2014. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2583858
    [4] PLANAS E, PASTOR E, CASAL J, et al. Analysis of the boiling liquid expanding vapor explosion (BLEVE) of a liquefied natural gas road tanker: The Zarzalico accident[J]. Journal of Loss Prevention in the Process Industries, 2015, 34:127-138. doi: 10.1016/j.jlp.2015.01.026
    [5] REN S, ZHANG Q. Influence of concentration distribution of hydrogen in air on measured flammability limits[J]. Journal of Loss Prevention in the Process Industries, 2015, 34:82-91. doi: 10.1016/j.jlp.2015.01.027
    [6] GAVELLI F, BULLISTER E, KYTOMAA H. Application of CFD (Fluent) to LNG spills into geometrically complex environments[J]. Journal of Hazardous Materials, 2008, 159(1):158-168. doi: 10.1016/j.jhazmat.2008.02.037
    [7] SUN B, UTIKAR R P, PAREEK V K, et al. Computational fluid dynamics analysis of liquefied natural gas dispersion for risk assessment strategies[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(1):117-128. doi: 10.1016/j.jlp.2012.10.002
    [8] KOOPMAN R P, CEDERWALL R T, ERMAK D L, et al. Analysis of Burro series 40 m3 LNG spill experiments[J]. Journal of Hazardous Materials, 1982, 6(1/2):43-83. https://www.researchgate.net/publication/236350847_Analysis_of_turbulent_wind-velocity_and_gas-concentration_fluctuations_during_the_Burro_series_40-msup_3_LNG_spill_experiments
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  5350
  • HTML全文浏览量:  1234
  • PDF下载量:  236
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-22
  • 修回日期:  2017-03-08
  • 刊出日期:  2018-07-25

目录

    /

    返回文章
    返回