基于多普勒测速技术的JB-9014炸药反应区结构研究

裴红波 黄文斌 覃锦程 张旭 赵锋 郑贤旭

裴红波, 黄文斌, 覃锦程, 张旭, 赵锋, 郑贤旭. 基于多普勒测速技术的JB-9014炸药反应区结构研究[J]. 爆炸与冲击, 2018, 38(3): 485-490. doi: 10.11883/bzycj-2017-0379
引用本文: 裴红波, 黄文斌, 覃锦程, 张旭, 赵锋, 郑贤旭. 基于多普勒测速技术的JB-9014炸药反应区结构研究[J]. 爆炸与冲击, 2018, 38(3): 485-490. doi: 10.11883/bzycj-2017-0379
PEI Hongbo, HUANG Wenbin, QIN Jincheng, ZHANG Xu, ZHAO Feng, ZHENG Xianxu. Reaction zone structure of JB-9014 explosive measured by PDV[J]. Explosion And Shock Waves, 2018, 38(3): 485-490. doi: 10.11883/bzycj-2017-0379
Citation: PEI Hongbo, HUANG Wenbin, QIN Jincheng, ZHANG Xu, ZHAO Feng, ZHENG Xianxu. Reaction zone structure of JB-9014 explosive measured by PDV[J]. Explosion And Shock Waves, 2018, 38(3): 485-490. doi: 10.11883/bzycj-2017-0379

基于多普勒测速技术的JB-9014炸药反应区结构研究

doi: 10.11883/bzycj-2017-0379
基金项目: 

国家自然科学基金项目 11602248

科学挑战专题项目 TZ2018001

国防科工局技术基础项目 JSZL2015212C001

详细信息
    作者简介:

    裴红波(1987-), 男, 博士, 助理研究员

    通讯作者:

    黄文斌, caephwb@163.com

  • 中图分类号: O381

Reaction zone structure of JB-9014 explosive measured by PDV

  • 摘要: 为了解TATB基JB-9014炸药的爆轰过程,利用火炮驱动飞片加载,采用光子多普勒测速技术,对JB-9014炸药的爆轰反应区结构进行了实验研究。实验中利用火炮发射高速蓝宝石飞片冲击起爆被测炸药,在炸药后表面安装镀膜氟化锂(LiF)窗口测量炸药爆轰时的界面粒子速度,测试过程的时间分辨率小于2 ns。将粒子速度剖面对时间进行一阶求导,通过一阶导数的拐点来确定炸药反应区宽度、反应时间。研究结果表明,钝感炸药JB-9014的反应时间为(0.26±0.02)μs,对应的化学反应区宽度为(1.5±0.2)mm,反应结束点处的压力为27.3 GPa,von Neumann峰处压力为40.3 GPa。
  • 图  1  爆轰反应区结构示意图

    Figure  1.  Schematic of the detonation wave profile

    图  2  测试系统示意图

    Figure  2.  Schematic of measurement system

    图  3  实验界面粒子速度历程

    Figure  3.  Experimental interface particle velocity-time curves

    图  4  界面粒子加速度

    Figure  4.  Interface particle acceleration history

    表  1  TATB基炸药反应区时间和宽度

    Table  1.   Time and length of reaction zone for TATB-based explosive

    炸药 方法 τ/μs a/mm 来源 备注
    JB-9014 激光测速+粒子速度求导 0.26±0.02 1.5±0.2 本文
    PBX9502 激光测速+炸药状态方程 0.28 2.1 Sheffield等[7]
    PBX9502 曲率效应试验+数值模拟 2.9 Wescott等[19]
    PBX9502 激光测速+数值模拟 0.3 2 Seitz等[8]
    PBX9502 激光测速+炸药状态方程 0.21±0.02
    0.28±0.01
    Dattelbaum等[20] LiF窗口
    Kel-F窗口
    JB-9014 光电法+粒子速度求导 0.31 1.75 赵同虎等[5]
    TATB/inert 光电法+粒子速度求导 0.26±0.05 1.24±0.17 Loboiko等[6]
    下载: 导出CSV
  • [1] DUFF R E, HOUSTON E. Measurement of the Chapman Jouguet pressure and reaction zone length in a detonating high explosive[J]. Journal of Chemical Physics, 1955, 23(7):1268-1273. DOI: 10.1063/1.1742255.
    [2] 张宝坪, 张庆明, 黄风雷.爆轰物理学[M].北京:兵器工业出版社, 2001:151-153.
    [3] TASKER D G, LEE R J. The measurement of electrical conductivity in the detonating condensed explosives[C]//Proceedings of the 9th International Detonation Symposium. USA: Office of Naval Research, 1989: 123-126.
    [4] LEE R J, GUSTAVSON P K. Electrical conductivity as a realtime probe of secondary combustion of solid-fuel additives in detonating explosives[C]//Shock Compression of Condensed Matter 2003. USA: American Institute of Physics, 2004: 1273-1276.
    [5] 赵同虎, 张新彦, 李斌, 等.用光电法研究钝感炸药JB-9014反应区结构[J].高压物理学报, 2002, 16(2):111-119. DOI: 10.11858/gywlxb.2002.02.005.

    ZHAO Tonghu, ZHANG Xinyan, LI Bin, et al. Detonation reaction zone structure of JB-9014[J]. Chinese Journal of High Pressure Physics, 2002, 16(2):111-119. DOI: 10.11858/gywlxb.2002.02.005.
    [6] LOBOIKO B L, LUBYATINSKY S N. Reaction zones of detonating solid explosives[J]. Combustion, Explosion, and Shock Waves, 2000, 36(6):716-733. DOI: 10.1023/A:1002898505288.
    [7] SHEFFIELD S A, BLOOMQUIST D D, TARVER C M. Subnanosecond measurements of detonation fronts in solid high explosives[J]. Journal of Chemical Physics, 1984, 80(8):3831-3844. DOI: 10.1063/1.447164.
    [8] SEITZ W L, STACY H L, ENGELKE R, et al. Detonation reaction-zone structure of PBX-9502[C]//Proceedings of the 9th International Detonation Symposium. USA: Office of Naval Research, 1989: 675-682.
    [9] GUSTAVSEN R L, BARTRAM B D, SANCHEZ N. Detonation wave profiles measured in plastic bonded explosives using 1550 nm photon Doppler velocimetry (PDV)[C]//Shock Compression of Condensed Matter 2009. USA: American Institute of Physics, 2009: 253-256.
    [10] BOUYER V, DOUCET M, DECARIS L. Experimental measurements of the detonation wave profile in a TATB based explosive[C]//EPJ Web of Conference. France: EDP Science, 2010: 378-384.
    [11] BOUYER V, HEBERT P, DOUCET M, et al. Experimental measurements of the chemical reaction zone of TATB and HMX based explosives[C]//Shock Compression of Condensed Matter 2011. USA: American Institute of Physics, 2012: 209-212.
    [12] BOUYER V, SHEFFIELD S A, DATTELBAUM D M, et al. Experimental measurements of the chemical reaction zone of detonating liquid explosives[C]//Shock Compression of Condensed Matter 2009. USA: American Institute of Physics, 2009: 177-180.
    [13] STRAND O T, GOOSMAN D R, MARTINEZ C, et al. Compact system for high-speed velocimetry using heterodyne techniques[J]. Review of Scientific Instruments, 2006, 77(8):083108. doi: 10.1063/1.2336749
    [14] 项红亮, 王建, 毕重连, 等.光子多普勒速度测量系统的数据处理方法[J].光学与光电技术, 2012, 10(2):52-56. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2221259

    XIANG Hongliang, WANG Jian, BI Chonglian, et al. Data processing of photonic Doppler velocimetry system[J]. Optics & Optoelectronic Technology, 2012, 10(2):52-56. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2221259
    [15] LIU S, WANG D, LI T, et al. Analysis of photonic Doppler velocimetry data based on the continuous wavelet transform[J]. Review of Scientific Instruments, 2011, 82(2):593-599. DOI: 10.1063/1.3534011.
    [16] 赵万广, 周显明, 李加波, 等.LiF单晶的高压折射率及窗口速度的修正[J].高压物理学报, 2014, 28(5):571-576. DOI: 10.11858/gywlxb.2014.05.010.

    ZHAO Wanguang, ZHOU Xianming, LI Jiabo, et al. Refractive index of LiF single crystal at high pressure and its window correction[J]. Chinese Journal of High Pressure Physics, 2014, 28(5):571-576. DOI: 10.11858/gywlxb.2014.05.010.
    [17] JENSEN B J, HOLTKAMP D B, RIGG P A, et al. Accuracy limits and window corrections for photon Doppler velocimetry[J]. Journal of Applied Physics, 2007, 101(1):523-454. DOI: 10.1063/1.2407290.
    [18] TARVER C M. Detonation reaction zones in condensed explosives[C]//Shock Compression of Condensed Matter 2005. USA: American Institute of Physics, 2005: 1026-1029.
    [19] WESCOTT B L, STEWART D S, DAVIS W C. Equation of state and reaction rate for condensed-phase explosives[J]. Journal of Applied Physics, 2005, 98(5):90-98.
    [20] DATTELBAUM D M, GUSTAVSEN R L, ASLAM T, et al. Influence of window characteristics on chemical reaction zone measurements in PBX 9502[C]//Proceedings of the 15th International Detonation Symposium. USA: Office of Naval Research, 2014: 396-406. DOI: 10.1063/1.2035310.
    [21] MADER C L. Numerical modeling of detonation[M]. Berkely, California:University of California Press, 1979:69-70.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  5360
  • HTML全文浏览量:  1480
  • PDF下载量:  238
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-18
  • 修回日期:  2017-11-15
  • 刊出日期:  2018-05-25

目录

    /

    返回文章
    返回