基于饱和响应时间的封闭空间内爆炸载荷等效方法研究

孔祥韶 周沪 郑成 吴卫国

孔祥韶, 周沪, 郑成, 吴卫国. 基于饱和响应时间的封闭空间内爆炸载荷等效方法研究[J]. 爆炸与冲击, 2019, 39(9): 092102. doi: 10.11883/bzycj-2018-0183
引用本文: 孔祥韶, 周沪, 郑成, 吴卫国. 基于饱和响应时间的封闭空间内爆炸载荷等效方法研究[J]. 爆炸与冲击, 2019, 39(9): 092102. doi: 10.11883/bzycj-2018-0183
KONG Xiangshao, ZHOU Hu, ZHENG Cheng, WU Weiguo. An equivalent calculation method for confined-blast load based on saturated response time[J]. Explosion And Shock Waves, 2019, 39(9): 092102. doi: 10.11883/bzycj-2018-0183
Citation: KONG Xiangshao, ZHOU Hu, ZHENG Cheng, WU Weiguo. An equivalent calculation method for confined-blast load based on saturated response time[J]. Explosion And Shock Waves, 2019, 39(9): 092102. doi: 10.11883/bzycj-2018-0183

基于饱和响应时间的封闭空间内爆炸载荷等效方法研究

doi: 10.11883/bzycj-2018-0183
基金项目: 装备预研教育部联合基金青年人才项目(6141A02033108);国家自然科学基金(11502180)
详细信息
    作者简介:

    孔祥韶(1983- ),男,博士,副教授, kongxs@whut.edu.cn

    通讯作者:

    吴卫国(1960- ),男,硕士,教授, mailjt@163.com

  • 中图分类号: O383

An equivalent calculation method for confined-blast load based on saturated response time

  • 摘要: 针对舱内爆炸载荷形式复杂、作用时间长、缺乏有效的简化描述方法的问题,首先采用显式动力学计算程序开展了内爆载荷作用下钢板动态响应的数值计算,在与试验结果对比验证的基础上分析了金属板的内爆载荷饱和冲量。通过对216种不同爆炸载荷加载时长与金属板响应关系的分析,提出了内爆炸载荷作用下结构最大变形所对应的饱和时间计算经验公式,并给出了饱和时间的无量纲系数建议值。考虑到内爆载荷初始冲击波的影响,结合爆炸载荷饱和作用时间的规律,提出了封闭空间爆炸载荷的矩形载荷等效方法,对比了18组简化载荷与耦合载荷分别作用下钢板的动力响应,验证了等效方法的有效性。
  • 图  1  内爆试验装置[4, 14]

    Figure  1.  Experimental setup of confined explosion [4, 14]

    图  2  1/4对称模型及坐标轴

    Figure  2.  1/4 symmetry model and coordinate system

    图  3  模型焊缝细节

    Figure  3.  Local detail model of welding line

    图  4  计算模型

    Figure  4.  Computational model

    图  5  三种板厚在40 g药量下顶板中心点响应计算

    Figure  5.  Response of the center point of top plates with three kinds of thickness under 40 g explosive

    图  6  数值计算值与试验值对比

    Figure  6.  Comparison between computational and experimental results

    图  7  不同载荷下侧板连接处变形

    Figure  7.  Deformation of the side plate at the joint under different loads

    图  8  顶板边界滑移与变形

    Figure  8.  Boundary slip and deformation of the top plate

    图  9  不同加载时长工况中点响应对比

    Figure  9.  Comparison of central point responses of plates with different loading times

    图  10  不同加载时长下响应峰值时刻对比

    Figure  10.  Response peak time comparison under different loading times

    图  11  爆炸载荷与等效矩形载荷

    Figure  11.  Explosive load and equivalent rectangular load

    图  12  等效载荷施加示意图

    Figure  12.  Sketch of applied equivalent load

    图  13  全耦合载荷与简化载荷计算对比

    Figure  13.  Comparison of fully coupled load and simplified load calculation

    图  14  简化矩形载荷作用下顶板中心点位移计算结果对比

    Figure  14.  Comparison of center point displacements of top plates under simplified rectangular load

    表  1  Johnson-Cook模型材料参数

    Table  1.   Material parameters of Johnson-Cook model

    板厚/mm材料A/MPaB/MPanCm
    3.4低碳钢233.47480.370.356 50.036 90.665 5
    4.0低碳钢221.67361.350.474 60.048 10.665 5
    5.1300WAsteel263.58519.640.384 30.025 90.665 5
    下载: 导出CSV

    表  2  夹持结构材料参数

    Table  2.   Material parameters of holding device

    部件状态方程刚体约束强度模型体积模量/GPa剪切模量/GPa
    上压板RigidNo15981.8
    下压板RigidYes15981.8
    螺栓LinearElastic15981.8
    下载: 导出CSV

    表  3  C4炸药JWL状态方程参数

    Table  3.   JWL EOS parameters of explosive C4

    ρ/(g·cm−3)A/GPaB/GPaR1R2wE/(GJ·m−3)
    1.601609.812.954.5001.4000.2509.000
    下载: 导出CSV

    表  4  无量纲饱和冲量参数

    Table  4.   Parameters of dimensionless saturation impulse

    板厚/mm饱和时间/ms板长/m材料密度/(g·cm−3屈服强度/MPaλ
    3.40.60.27.83233.4716.4
    4.00.60.27.83221.6716.0
    5.10.60.27.83263.5817.4
    下载: 导出CSV

    表  5  等效矩形载荷换算

    Table  5.   Equivalent rectangular load

    板厚/mm药量/g饱和冲量/(Pa·s)等效压力/kPa等效时间/μs
    3.4202 312.634 133.46559.49
    303 198.585 808.93550.63
    404 035.657 363.20548.08
    504 856.178 910.56544.99
    605 617.4510 378.59541.25
    706 369.5111 877.10536.28
    4.0202 358.524 190.00562.89
    303 273.745 916.10553.36
    404 136.707 534.59549.03
    504 975.169 137.39544.48
    605 762.8910 656.95540.76
    706 560.2712 250.34535.52
    5.1202 434.134 266.77570.49
    303 401.436 059.57561.33
    404 315.987 753.58556.64
    505 204.079 435.92551.52
    606 053.8211 069.43546.90
    706 916.3512 757.55542.14
    下载: 导出CSV
  • [1] EDRI I, SAVIR Z, FELDGUN V R, et al. On blast pressure analysis due to a partially confined explosion: I: experimental studies [J]. International Journal of Protective Structures, 2011, 2: 1–20. DOI: 10.1260/2041-4196.2.1.1.
    [2] HU Y, WU C, Lukaszewicz M, et al. Characteristics of confined blast loading in unvented structures [J]. International Journal of Protective Structures, 2011, 2(1): 21–44. DOI: 10.1260/2041-4196.2.1.21.
    [3] 杨科之, 杨秀敏, 王年桥. 内爆荷载作用下结构等效静载计算方法 [J]. 解放军理工大学学报(自然科学版), 2002, 3(4): 31–33.

    YANG Kezhi, YANG Xiumin, WANG Nianqiao. Equivalent static load calculation method of structure subjected to internal explosion [J]. Journal of PLA University of Science and Technology(Natural Science Edition), 2002, 3(4): 31–33.
    [4] GERETTO C, YUEN S C K, NURICK G N. An experimental study of the effects of degrees of confinement on the response of square mild steel plates subjected to blast loading [J]. International Journal of Impact Engineering, 2015, 79: 32–44. DOI: 10.1016/j.ijimpeng.2014.08.002.
    [5] KUHL A L, REICHENBACH H. Combustion effects in confined explosions [J]. Proceedings of the Combustion Institute, 2009, 32(2): 2291–2298. DOI: 10.1016/j.proci.2008.05.001.
    [6] KUHL A L, BELL J B, BECKNER V E, et al. Spherical combustion clouds in explosions [J]. Shock Waves, 2013, 23(3): 233–249. DOI: 10.1007/s00193-012-0410-y.
    [7] ZHAO Y P, YU T X, FANG J. Large dynamic plastic deflection of a simply supported beam subjected to rectangular pressure pulse [J]. Archive of Applied Mechanics, 1994, 64(3): 223–232.
    [8] ZHAO Y P, YU T X, FANG J. Saturation impulses for dynamically loaded structures with finite-deflections [J]. Structural Engineering & Mechanics, 1995, 3(6): 583–592.
    [9] ZHU L, YU T X. Saturated impulse for pulse-loaded elastic-plastic square plates [J]. International Journal of Solids & Structures, 1997, 34(14): 1709–1718.
    [10] NURICK G N, MARTIN J B. Deformation of thin plates subjected to impulsive loading: a review Part II: experimental studies [J]. International Journal of Impact Engineering, 1989, 8(2): 171–186. DOI: 10.1016/0734-743X(89)90015-8.
    [11] NURICK G N, MARTIN J B. Deformation of thin plates subjected to impulsive loading: a review: Part I: theoretical considerations [J]. International Journal of Impact Engineering, 1989, 8(2): 159–170. DOI: 10.1016/0734-743X(89)90014-6.
    [12] Dragos J, WU C Q, Oehlers D J. Simplification of fully confined blasts for structural response analysis [J]. Engineering Structures, 2013, 56(11): 312–326.
    [13] PICKERD V, BORNSTEIN H, MCCARTHY P, et al. Analysis of the structural response and failure of containers subjected to internal blast loading [J]. International Journal of Impact Engineering, 2016, 95: 40–53. DOI: 10.1016/j.ijimpeng.2016.04.010.
    [14] GERETTO C. The effects of different degrees of confinement on the deformation of square plates subjected to blast loading [D]. Western Cape: University of Cape Town, 2012: 101−203.
    [15] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
    [16] ZHENG C, KONG X S, WU W G, et al. Experimental and numerical studies on the dynamic response of steel plates subjected to confined blast loading [J]. International Journal of Impact Engineering, 2018, 113: 144–160. DOI: 10.1016/j.ijimpeng.2017.11.013.
    [17] URTIEW P A, HAYES B. Parametric study of the dynamic JWL-EOS for detonation products [J]. Combustion, Explosion, and Shock Waves, 1991, 27(4): 505–514.
    [18] XU W Z, KONG X S, ZHENG C, et al. Numerical method for predicting the blast wave in partially confined chamber [J]. Mathematical Problems in Engineering, 2018, 2018(5): 1–17.
  • 加载中
图(14) / 表(5)
计量
  • 文章访问数:  5980
  • HTML全文浏览量:  1844
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-27
  • 修回日期:  2019-01-25
  • 刊出日期:  2019-09-01

目录

    /

    返回文章
    返回