使用新型物态方程的超高速碰撞物质点法模拟

李依潇 王生捷

李依潇, 王生捷. 使用新型物态方程的超高速碰撞物质点法模拟[J]. 爆炸与冲击, 2019, 39(10): 104201. doi: 10.11883/bzycj-2018-0261
引用本文: 李依潇, 王生捷. 使用新型物态方程的超高速碰撞物质点法模拟[J]. 爆炸与冲击, 2019, 39(10): 104201. doi: 10.11883/bzycj-2018-0261
LI Yixiao, WANG Shengjie. Simulation of hypervelocity impact by the material point method coupled with a new equation of state[J]. Explosion And Shock Waves, 2019, 39(10): 104201. doi: 10.11883/bzycj-2018-0261
Citation: LI Yixiao, WANG Shengjie. Simulation of hypervelocity impact by the material point method coupled with a new equation of state[J]. Explosion And Shock Waves, 2019, 39(10): 104201. doi: 10.11883/bzycj-2018-0261

使用新型物态方程的超高速碰撞物质点法模拟

doi: 10.11883/bzycj-2018-0261
详细信息
    作者简介:

    李依潇(1990- ),男,博士研究生,oldcoon@sina.com

  • 中图分类号: O385

Simulation of hypervelocity impact by the material point method coupled with a new equation of state

  • 摘要: 为更准确地对超高速碰撞进行数值模拟、获得与实验结果相似度更高的碎片云形态,利用分子动力学方法求解材料的冷能、冷压,并结合Grover定标律方程,建立了一种表达形式简洁、可处理相变影响的新型物态方程,并代入自编柱坐标物质点法计算程序,使用新型物态方程计算所得的碎片云与使用Mie-Grüneisen、Tillotson等传统物态方程的计算结果相比,在尺寸、形态方面均能够与实验结果更好地吻合,证明了新型物态方程的有效性。
  • 图  1  冷能与体积比的关系

    Figure  1.  Relation between cold energy and volume ratio

    图  2  冷压与体积比的关系

    Figure  2.  Relation between cold pressure and volume ratio

    图  3  数值模拟结果与实验结果[15]的对比

    Figure  3.  Comparison between experimental[15] and numerical results

  • [1] LIU Menglong, WANG Qiang, ZHANG Qingming, et al. Characterizing hypervelocity(>2.5 km/s)-impact-engendered damage in shielding structures using in-situ acoustic emission: simulation and experiment [J]. International Journal of Impact Engineering, 2018, 111: 273–284. DOI: 10.1016/j.ijimpeng.2017.10.004.
    [2] 张雄, 廉艳平, 刘岩, 等. 物质点法[M]. 北京: 清华大学出版社, 2013: 7; 186.
    [3] ZHANG X, CHEN Z, LIU Y. The material point method [M]. Amsterdam: Elsevier Academic Press, 2017: 7.
    [4] ZUKAS A J. Introduction to hydrocodes [M]. Amsterdam: Elsevier Academic Press, 2004: 94−95.
    [5] 汤文辉, 张若棋. 物态方程理论及计算概论 [M]. 2版. 北京: 高等教育出版社, 2008: 282.
    [6] 贾光辉. 航天器结构超高速碰撞数值仿真[M]. 北京: 北京航空航天大学出版社, 2017: 18.
    [7] HIERMAIER S J. Structures under crash and impact [M]. Berlin: Springer Press, 2008:72.
    [8] SULSKY D, SCHREYER H L. Axisymmetric form of the material point method with application to upsetting and Taylor impact problems [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1/2/3/4): 409–429. DOI: 10.1016/s0045-7825(96)01091-2.
    [9] MA X, ZHANG D Z, GIGUERE P T, et al. Axisymmetric computation of Taylor cylinder impacts of ductile and brittle materials using original and dual domain material point methods [J]. International Journal of Impact Engineering, 2013, 54: 96–104. DOI: 10.1016/j.ijimpeng.2012.11.001.
    [10] 黄鹏, 张雄. 显式物质点法的计算格式比较 [C] // 第五届全国爆炸力学实验技术学术会议. 西安, 2008: 220−229.
    [11] SATO A. Introduction to practice of molecular simulation [M]. Amsterdam: Elsevier Press, 2011: 1.
    [12] CAI J, YE Y Y. Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys [J]. Physical Review, 1996, 54(12): 8398–8410. DOI: 10.1103/PhysRevB.54.8398.
    [13] RAPAPORT D C. The art of molecular dynamics simulation [M]. 2nd ed. Cambridge: Cambridge University Press, 2004.
    [14] ROYCE E B. GRAY: a three-phase equation of state for metals: UCRL-51121 [R]. USA: Lawrence Livermore Lab, 1971.
    [15] PIEKUTOWSKI A J. Formation and description of debris clouds produced by hypervelocity impact: NASA contractor report 4707 [R]. USA: NASA, 1996.
  • 加载中
图(3)
计量
  • 文章访问数:  5900
  • HTML全文浏览量:  1726
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-16
  • 修回日期:  2018-10-17
  • 刊出日期:  2019-10-01

目录

    /

    返回文章
    返回