混凝土高温动态劈拉行为细观数值分析

金浏 郝慧敏 张仁波 杜修力

金浏, 郝慧敏, 张仁波, 杜修力. 混凝土高温动态劈拉行为细观数值分析[J]. 爆炸与冲击, 2020, 40(5): 053102. doi: 10.11883/bzycj-2018-0401
引用本文: 金浏, 郝慧敏, 张仁波, 杜修力. 混凝土高温动态劈拉行为细观数值分析[J]. 爆炸与冲击, 2020, 40(5): 053102. doi: 10.11883/bzycj-2018-0401
JIN Liu, HAO Huimin, ZHANG Renbo, DU Xiuli. Meso-scale simulations on dynamic splitting tensile behaviors of concrete at elevated temperatures[J]. Explosion And Shock Waves, 2020, 40(5): 053102. doi: 10.11883/bzycj-2018-0401
Citation: JIN Liu, HAO Huimin, ZHANG Renbo, DU Xiuli. Meso-scale simulations on dynamic splitting tensile behaviors of concrete at elevated temperatures[J]. Explosion And Shock Waves, 2020, 40(5): 053102. doi: 10.11883/bzycj-2018-0401

混凝土高温动态劈拉行为细观数值分析

doi: 10.11883/bzycj-2018-0401
基金项目: 国家自然科学基金(51822801);国家重点研发项目(2018YFC1504302)
详细信息
    作者简介:

    金 浏(1985- ),男,博士,教授,kinglew2007@163.com

    通讯作者:

    杜修力(1962- ),男,博士,教授,duxiuli@bjut.edu.cn

  • 中图分类号: O383;TU528.1

Meso-scale simulations on dynamic splitting tensile behaviors of concrete at elevated temperatures

  • 摘要: 为研究高温作用下混凝土的动态劈裂拉伸破坏行为,考虑了力学性能的高温退化与应变率增强效应的联合作用,结合混凝土材料内部非均质性,建立了细观尺度数值分析模型与方法。将该数值方法分为两个步骤:首先对混凝土进行热传导行为模拟,进而将输出结果作为初始条件对混凝土动态劈裂拉伸行为进行细观模拟。在模拟结果与已有试验现象良好吻合的基础上,分析了高温下混凝土动态劈裂拉伸行为及其细观破坏机制,对比了不同应变率及加热温度下混凝土的劈裂拉伸应力-应变关系,揭示了混凝土应变率效应与温度退化效应的相互影响规律。研究结果表明:(1) 高温作用后,试件损伤区域较常温下更集中;(2) 名义应变率较大时,破坏过程急促,常温下骨料发生破坏,而经历高温后骨料基本没有破坏;(3) 由于混凝土试件细观结构的非均质性,其内部应力呈枣核状不连续分布;(4) 相比于应变率效应,混凝土劈裂拉伸强度受温度退化作用的影响更显著。
  • 图  1  混凝土细观力学模型及网格划分

    Figure  1.  Meso-scopic models of concrete specimens and meshing

    图  2  高温下混凝土力学性能退化

    Figure  2.  Mechanical property degradation of concrete at elevated temperature

    图  3  标准温升曲线

    Figure  3.  Standard temperature curve

    图  4  四面受火混凝土试件不同时刻温度场分布

    Figure  4.  Temperature field within concrete specimen subjected to four-side fire

    图  5  模拟的破坏模式与试验结果对比

    Figure  5.  Comparison of failure modes between the simulated and experimental results

    图  6  加热60 min后混凝土试件应变率为1 s−1时的劈裂拉伸损伤过程

    Figure  6.  Damage process of the concrete specimen at the strain rate of 1 s−1 exposured to fire for 60 minutes

    图  7  高温下不同应变率下峰值应力处混凝土试件等效塑性应变

    Figure  7.  Equivalent plastic strain of the concrete specimen at peak stress under different strain rates and elevated temperatures

    图  8  不同细观组分的损伤分布情况

    Figure  8.  Damage distribution in different microscopic components

    图  9  高温下不同应变率下峰值应力处混凝土试件竖直应力

    Figure  9.  Longitudinal stress in the concrete specimen at peak stress under different strain rates and elevated temperatures

    图  10  不同应变率下混凝土试件应力-应变关系

    Figure  10.  Stress-strain curves of the concrete specimen at different strain rates and elevated temperatures

    图  11  不同应变率下的温度损伤程度

    Figure  11.  Temperature damage factors at different strain rates

    图  12  不同温度下动态拉伸强度增大系数与应变率的关系

    Figure  12.  Relations of dynamic increase factors of tensile strength to strain rates at different elevated temperatures

    表  1  室温下混凝土各细观组分热工参数

    Table  1.   Thermal parameters for the meso-constituents of concrete at room temperature (20 °C)

    细观组分导热系数κ/
    (W·m−1∙K−1)
    比热容c/
    (J·kg−1∙K−1)
    密度ρ/
    (kg·m−3)
    骨料3.15[17]798[18]2 750
    界面0.79062 450
    砂浆1.9813[19]2 750
    下载: 导出CSV

    表  2  室温下混凝土各细观组分力学参数

    Table  2.   Mechanical parameters for the meso-constituents of concrete at room temperature (20 °C)

    细观组分压缩强度
    fc/MPa
    拉伸强度
    ft/MPa
    弹性模量
    E /GPa
    泊松比
    υ
    骨料152.0[23]35[23]0.2
    界面32.53.25300.2
    砂浆40.04.00250.2
    下载: 导出CSV

    表  3  不同应变率下的混凝土温度损伤残余因子

    Table  3.   Temperature damage residual factors of concrete at different strain rates and different heating times

    应变率/s−1温度损伤残余因子
    0 min15 min30 min60 min
    1×10−610.4100.2620.242
    1×10−410.4010.2630.238
    1×10−210.3970.2620.235
    1×10−110.3920.2560.229
    1×10010.3760.2490.228
    1×10110.3720.2440.221
    1×10210.3170.2080.194
    下载: 导出CSV

    表  4  高温时不同应变率下的混凝土动态拉伸强度增大系数

    Table  4.   Dynamic increase factors of tensile strength of concrete under different strain rates and different heating times

    应变率/s−1δtδc
    0 min15 min30 min60 minCEB规范[16]
    1×10−61.0001.0001.0001.0001.0001.000
    1×10−41.1131.0871.1181.0951.0861.017
    1×10−21.2491.2071.2501.2141.1801.085
    1×10−11.3551.2951.3221.2831.2301.120
    1×1001.5441.4161.4701.4551.2821.157
    1×1011.8361.6671.7091.6741.3371.195
    1×1023.1372.4232.4872.5192.8781.793
    下载: 导出CSV
  • [1] 赵建魁, 方秦, 陈力, 等. 爆炸与火荷载联合作用下RC梁耐火极限的数值分析 [J]. 天津大学学报(自然科学与工程技术版), 2015, 10(48): 873–880.

    ZHAO J K, FANG Q, CHEN L, et al. Numerical analysis of fire resistance of RC beams subjected to explosion and fire load [J]. Journal of Tianjin University (Science and Technology), 2015, 10(48): 873–880.
    [2] 李杰, 卢朝辉, 张其云. 混凝土随机损伤本构关系-单轴受压分析 [J]. 同济大学学报(自然科学版), 2003, 31(5): 505–509. DOI: 10.3321/j.issn:0253-374X.2003.05.001.

    LI J, LU Z H, ZHANG Q Y. Study on stochastic damage constitutive law for concrete material subjected to uniaxial compressive stress [J]. Journal of Tongji University (Natural Science), 2003, 31(5): 505–509. DOI: 10.3321/j.issn:0253-374X.2003.05.001.
    [3] 王政, 倪玉山, 曹菊珍, 等. 冲击载荷下混凝土动态力学性能研究进展 [J]. 爆炸与冲击, 2005, 25(6): 519–527. DOI: 10.11883/1001-1455(2005)06-0519-09.

    WANG Z, NI Y S, CAO J Z, et al. Recent advances of dynamic mechanical behavior of concrete under impact loading [J]. Explosion and Shock Waves, 2005, 25(6): 519–527. DOI: 10.11883/1001-1455(2005)06-0519-09.
    [4] ZHOU X, HAO H. Mesoscale modelling of concrete tensile failure mechanism at high strain rates [J]. Computers and Structures, 2008, 86(21): 2013–2026.
    [5] 刘海峰, 宁建国. 冲击荷载作用下混凝土材料的细观本构模型 [J]. 爆炸与冲击, 2009, 29(3): 261–267. DOI: 10.11883/1001-1455(2009)03-0261-07.

    LIU H F, NING J G. A meso-mechanical constitutive model of concrete subjected to impact loading [J]. Explosion and Shock Waves, 2009, 29(3): 261–267. DOI: 10.11883/1001-1455(2009)03-0261-07.
    [6] LU Y, LI Q. About the dynamic uniaxial tensile strength of concrete-like materials [J]. International Journal of Impact Engineering, 2011, 38(4): 171–180. DOI: 10.1016/j.ijimpeng.2010.10.028.
    [7] 秦川, 武明鑫, 张楚汉. 混凝土冲击劈拉实验与细观离散元数值仿真 [J]. 水力发电学报, 2013, 32(1): 196–205.

    QIN C, WU M X, ZHANG C H. Impact splitting tensile experiments of concrete and numerical modeling by meso-scale discrete elements [J]. Journal of Hydroelectric Engineering, 2013, 32(1): 196–205.
    [8] 宋来忠, 张伟朋, 周斌, 等. 混凝土动态劈拉特性及损伤机理研究 [J]. 三峡大学学报(自然科学版), 2015, 37(6): 10–14.

    SONG L Z, ZHANG P W, ZHOU B, et al. Dynamic splitting tensile behavior and damage mechanism of concrete [J]. Journal of China Gorges University (Natural Science), 2015, 37(6): 10–14.
    [9] 王孝政, 彭刚, 刘博文, 等. 不同应变速率下混凝土劈拉性能试验研究 [J]. 工业建筑, 2017, 47(5): 107–110.

    WANG X Z, PENG G, LIU B W, et al. Experimental research on splitting tensile performance of concrete under different strain rate [J]. Industrial Construction, 2017, 47(5): 107–110.
    [10] MA Q, GUO R, ZHAO Z, et al. Mechanical properties of concrete at high temperature: a review [J]. Construction and Building Materials, 2015, 93: 371–383. DOI: 10.1016/j.conbuildmat.2015.05.131.
    [11] 郭金纯, 余江滔, 陆洲导. 不同温-时影响下混凝土劈拉强度的试验研究 [J]. 工业建筑, 2008, 38(9): 74–76.

    GUO J C, YU J T, LU Z D. Experimental research on the splitting tensile strength of concrete at different temperature and time [J]. Industrial Construction, 2008, 38(9): 74–76.
    [12] 金鑫, 杜红秀, 阎蕊珍. 高性能混凝土高温后劈裂抗拉强度试验研究 [J]. 太原理工大学学报, 2013, 44(5): 637–640. DOI: 10.3969/j.issn.1007-9432.2013.05.019.

    JIN X, DU X H, YAN R Z. Experimental research on the splitting tensile strength of high-performance concrete after elevated temperature [J]. Journal of Taiyuan University of Technology, 2013, 44(5): 637–640. DOI: 10.3969/j.issn.1007-9432.2013.05.019.
    [13] JIN L, HAO H M, ZHANG R B, et al. Determination of the effect of elevated temperatures on dynamic compressive properties of heterogeneous concrete: a meso-scale numerical study [J]. Construction and Building Materials, 2018, 188: 685–694. DOI: 10.1016/j.conbuildmat.2018.08.090.
    [14] 漆雅庆. 火灾下钢筋混凝土构件的非线性有限元分析研究[D]. 广州: 华南理工大学, 2011.
    [15] JIN L, ZHANG R B, DU X L. Characterization of the temperature-dependent heat conduction in heterogeneous concretes [J]. Magazine of Concrete Research, 2018, 70(7): 325–339. DOI: 10.1680/jmacr.17.00174.
    [16] Euro-International Committee for Concrete. CEB-FIP model code 1990 [S]. Trowbridge, Wiltshire, UK: Redwood Books, 1993.
    [17] KHAN M I. Factors affecting the thermal properties of concrete and applicability of its prediction models [J]. Building and Environment, 2002, 37(6): 607–614.
    [18] VOSTEEN H D, SCHELLSCHMIDT R. Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock [J]. Physics and Chemistry of the Earth, 2003, 28(9): 499–509.
    [19] ČERNÝ R, MADĔRA J, PODĔBRADSKÁ J, et al. The effect of compressive stress on thermal and hygric properties of Portland cement mortar in wide temperature and moisture ranges [J]. Cement and Concrete Research, 2000, 30(8): 1267–1276.
    [20] 李凌志. 火灾后混凝土材料力学性能与温度、时间的关系[D]. 上海: 同济大学, 2006.
    [21] CHEN L, FANG Q, JIANG X, et al. Combined effects of high temperature and high strain rate on normal weight concrete [J]. International Journal of Impact Engineering, 2015, 86: 40–56. DOI: 10.1016/j.ijimpeng.2015.07.002.
    [22] 朱合华, 闫治国, 邓涛, 等. 3种岩石高温后力学性质的试验研究 [J]. 岩石力学与工程学报, 2006, 25(10): 1945–1950. DOI: 10.3321/j.issn:1000-6915.2006.10.001.

    ZHU H H, YAN Z G, DENG T, et al. Testing study on mechanical properties of tuff, graniteand breccia after high temperatures [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(10): 1945–1950. DOI: 10.3321/j.issn:1000-6915.2006.10.001.
    [23] 邱一平, 林卓英. 花岗岩样品高温后损伤的试验研究 [J]. 岩土力学, 2006, 27(6): 1005–1010. DOI: 10.3969/j.issn.1000-7598.2006.06.032.

    QIU Y P, LIN Z Y. Testing study on damage of granite samples after high temperature [J]. Rock and Soil Mechanics, 2006, 27(6): 1005–1010. DOI: 10.3969/j.issn.1000-7598.2006.06.032.
    [24] LEE J, FENVES G L. Plastic-damage model for cyclic loading of concrete structures [J]. ASCE Journal of Engineering Mechanics, 1998, 124(8): 892–900. DOI: 10.1061/(ASCE)0733-9399(1998)124:8(892).
    [25] International Organization for Standardization. Fire resistance tests: elements of building construction[S]. Geneva: International Standards Organization, 1999.
    [26] 中华人民共和国建设部. 普通混凝土力学性能试验方法标准[M]. 北京: 中国建筑工业出版社, 2003.
    [27] 杜敏. 混凝土与约束混凝土柱尺寸效应研究[D]. 北京: 北京工业大学, 2017.
    [28] 项凯, 余江滔, 陆洲导. 多因素影响下高温后混凝土劈裂抗拉强度试验 [J]. 武汉理工大学学报, 2008, 30(10): 51–55.

    XIANG K, YU J T, LU Z D. Experimental study on splitting tension strength of fire-damaged concrete with different influencing factors [J]. Journal of Wuhan University of Technology, 2008, 30(10): 51–55.
    [29] 陶俊林, 秦李波, 李奎, 等. 混凝土高温动态压缩力学性能实验 [J]. 爆炸与冲击, 2011, 31(1): 101–106. DOI: 10.11883/1001-1455(2011)03-0268-06.

    TAO J L, QIN L B, LI K, et al. Experimental investigation on dynamic compression mechanical performance of concrete at high temperature [J]. Explosion and Shock Waves, 2011, 31(1): 101–106. DOI: 10.11883/1001-1455(2011)03-0268-06.
    [30] 何远明, 霍静思, 陈柏生, 等. 高温下混凝土SHPB动态力学性能试验研究 [J]. 工程力学, 2012, 29(9): 200–208.

    HE Y M, HUO J S, CHEN B S, et al. Impact tests on dynamic behavior of concrete at elevated temperatures [J]. Engineering Mechanics, 2012, 29(9): 200–208.
    [31] 许金余, 刘健, 李志武, 等. 高温中与高温后混凝土的冲击力学特性 [J]. 建筑材料学报, 2013, 16(1): 1–5. DOI: 10.3969/j.issn.1007-9629.2013.01.001.

    XU J Y, LIU J, LI Z W, et al. Impact mechanical properties of concrete at and after exposure to high temperature [J]. Journal of Building Materials, 2013, 16(1): 1–5. DOI: 10.3969/j.issn.1007-9629.2013.01.001.
    [32] 王宇涛, 刘殿书, 李胜林, 等. 高温后混凝土静动态力学性能试验研究 [J]. 振动与冲击, 2014, 33(20): 16–19.

    WANG Y T, LIU D S, LI S L, et al. Static and dynamic mechanical properties of concrete after high temperature treatment [J]. Journal of Vibration and Shock, 2014, 33(20): 16–19.
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  5671
  • HTML全文浏览量:  1710
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-17
  • 修回日期:  2019-01-25
  • 刊出日期:  2020-05-01

目录

    /

    返回文章
    返回