基于裂纹扩展脆性岩石动力压缩力学特性研究

李晓照 戚承志

李晓照, 戚承志. 基于裂纹扩展脆性岩石动力压缩力学特性研究[J]. 爆炸与冲击, 2019, 39(8): 083101. doi: 10.11883/bzycj-2019-0078
引用本文: 李晓照, 戚承志. 基于裂纹扩展脆性岩石动力压缩力学特性研究[J]. 爆炸与冲击, 2019, 39(8): 083101. doi: 10.11883/bzycj-2019-0078
LI Xiaozhao, QI Chengzhi. Study on microcrack growth-based dynamic compressive mechanical properties in brittle rocks[J]. Explosion And Shock Waves, 2019, 39(8): 083101. doi: 10.11883/bzycj-2019-0078
Citation: LI Xiaozhao, QI Chengzhi. Study on microcrack growth-based dynamic compressive mechanical properties in brittle rocks[J]. Explosion And Shock Waves, 2019, 39(8): 083101. doi: 10.11883/bzycj-2019-0078

基于裂纹扩展脆性岩石动力压缩力学特性研究

doi: 10.11883/bzycj-2019-0078
基金项目: 国家自然科学基金(51708016,51774018);国家重点基础研究发展计划(2015CB0578005);北京建筑大学市属高校基本科研业务费专项(X19006,X19013)
详细信息
    作者简介:

    李晓照(1987- ),男,博士,讲师,lixiaozhao@bucea.edu.cn

  • 中图分类号: O383; TU452

Study on microcrack growth-based dynamic compressive mechanical properties in brittle rocks

  • 摘要: 动态压缩荷载作用下,脆性岩石内部动态细观裂纹扩展特性,对岩石宏观动态力学特性有着重要的影响。然而,对岩石内部动态细观裂纹扩展与宏观动态力学特性的关系研究较少。基于准静态裂纹扩展作用下的应力-应变本构模型、准静态与动态裂纹扩展断裂韧度关系、裂纹速率与应变率关系模型及应变率与动态断裂韧度关系,提出了一种基于细观力学的动态应力-应变本构模型。其中裂纹速率与应变率关系,是根据裂纹长度与应变关系的时间导数推出;应变率与动态断裂韧度关系,是根据推出的裂纹速率及应变率关系,与裂纹速率及断裂韧度关系相结合而得到。研究了应变率对应力-应变本构关系及动态压缩强度影响。并通过试验结果验证了模型的合理性。讨论了岩石初始损伤、围压、模型中参数mε0R对应力-应变关系、动态压缩强度和动态弹性模量的影响。研究结果可为动态压缩荷载作用下深部地下工程脆性围岩稳定性分析提供了一定的理论支持。
  • 图  1  动态压缩荷载作用下的裂纹扩展模型

    Figure  1.  Crack growth model under dynamic compressive loadings

    图  2  大理岩与与花岗岩动态应力-应变曲线的理论与试验结果[3, 23]对比

    Figure  2.  Comparisons between theoretical and experimental [3, 23] dynamic stress-strain curves in marble and granite

    图  3  应变率影响下的应力应变本构关系

    Figure  3.  Effect of strain rate on stress-strain curve

    图  4  不同模型参数的应变率与岩石动态压缩强度关系

    Figure  4.  Relations between strain rate and dynamic compressive strength under different model parameters

    图  5  不同模型参数的应变率与动态弹性模量关系

    Figure  5.  Relations between strain rate and dynamic elastic module under different model parameters

    图  6  初始损伤D0对动态应力应变本构关系影响

    Figure  6.  Effect of initial damage on dynamic stress-strain constitutive relation

    图  7  围压对动态应力应变本构关系影响

    Figure  7.  Effect of confining pressure on dynamic stress-strain constitutive relation

    图  8  参数m对动态应力应变本构关系影响

    Figure  8.  Effect of parameter m on dynamic stress-strain constitutive relation

    图  9  参数ε0对动态应力应变本构关系影响

    Figure  9.  Effect of parameter ε0 on dynamic stress-strain constitutive relation

    图  10  参数R对动态应力应变本构关系影响

    Figure  10.  Effect of parameter R on dynamic stress-strain constitutive relation

    图  11  应变率对不同模型参数与动态弹性模量关系影响

    Figure  11.  Effects of strain rate on the relationships between model parameters and dynamic elastic modules

  • [1] 李晓锋, 李海波, 刘凯, 等. 冲击荷载作用下岩石动态力学特性及破裂特征研究 [J]. 岩石力学与工程学报, 2017, 36(10): 2393–2405.

    LI Xiaofeng, LI Haibo, LIU Kai, et al. Dynamic properties and fracture characteristics of rocks subject to impact loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(10): 2393–2405.
    [2] 李刚, 陈正汉, 谢云, 等. 高应变率条件下三峡工程花岗岩动力特性的试验研究 [J]. 岩土力学, 2007, 28(9): 1833–1840. doi: 10.3969/j.issn.1000-7598.2007.09.013

    LI Gang, CHEN Zhenghan, XIE Yun, et al. Test research on dynamic characteristics of three gorges granite under high strain rate [J]. Rock and Soil Mechanics, 2007, 28(9): 1833–1840. doi: 10.3969/j.issn.1000-7598.2007.09.013
    [3] 翟越, 马国伟, 赵均海, 等. 花岗岩和混凝土在单轴冲击压缩荷载下的动态性能比较 [J]. 岩石力学与工程学报, 2007, 26(4): 762–768. doi: 10.3321/j.issn:1000-6915.2007.04.015

    ZHAI Yue, MA Guowei, ZHAO Junhai, et al. Comparison of dynamic capabilities of granite and concrete under uniaxial impact compressive loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(4): 762–768. doi: 10.3321/j.issn:1000-6915.2007.04.015
    [4] 卢志堂, 王志亮. 中高应变率下花岗岩动力特性三轴试验研究 [J]. 岩土工程学报, 2016, 38(6): 1087–1094. doi: 10.11779/CJGE201606016

    LU Zhitang, WANG Zhiliang. Triaxial tests on dynamic properties of granite under intermediate and high strain rates [J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1087–1094. doi: 10.11779/CJGE201606016
    [5] 金解放, 李夕兵, 钟海兵. 三维静载与循环冲击组合作用下砂岩动态力学特性研究 [J]. 岩石力学与工程学报, 2013, 32(7): 1358–1372. doi: 10.3969/j.issn.1000-6915.2013.07.010

    JIN Jiefang, LI Xibing, ZHONG Haibing. Study of dynamic mechanical characteristic of sandstone subjected to three-dimensional coupled static-cyclic impact loadings [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(7): 1358–1372. doi: 10.3969/j.issn.1000-6915.2013.07.010
    [6] 唐礼忠, 程露萍, 王春, 等. 高静载条件下受频繁动力扰动时蛇纹岩动力学特性研究 [J]. 岩土力学, 2016, 37(10): 2737–2745.

    TANG Lizhong, CHENG Luping, WANG Chun, et al. Dynamic characteristics of serpentinite under condition of high static load and frequent dynamic disturbance [J]. Rock and Soil Mechanics, 2016, 37(10): 2737–2745.
    [7] 李帅, 朱万成, 牛雷雷, 等. 动态扰动对应力松弛岩石变形行为影响的试验研究 [J]. 岩土力学, 2018, 29(8): 2795–2803.

    LI Shuai, ZHU Wancheng, NIU Leilei, et al. Experimental study on influence of dynamic disturbance on deformation behavior of rock under stress relaxation [J]. Rock and Soil Mechanics, 2018, 29(8): 2795–2803.
    [8] 曹文贵, 林星涛, 张超, 等. 基于非线性动态强度准则的岩石动态变形过程统计损伤模拟方法 [J]. 岩石力学与工程学报, 2017, 36(4): 794–802.

    CAO Wengui, LIN Xingtao, ZHANG Chao, et al. A statistical damage simulation method of dynamic deformation process for rocks based on nonlinear dynamic strength criterion [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(4): 794–802.
    [9] 李夕兵, 左宇军, 马春德. 中应变率下动静组合加载岩石的本构模型 [J]. 岩石力学与工程学报, 2006, 25(5): 865–874. doi: 10.3321/j.issn:1000-6915.2006.05.001

    LI Xibing, ZUO Yujun, MA Chunde. Constitutive model of rock under coupled static-dynamic loading with intermediate strain rate [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(5): 865–874. doi: 10.3321/j.issn:1000-6915.2006.05.001
    [10] 王春, 唐礼忠, 程露萍, 等. 一维高应力及重复冲击共同作用下岩石的本构模型 [J]. 岩石力学与工程学报, 2015, 34(S1): 2868–2878.

    WANG Chun, TANG Lizhong, CHENG Luping, et al. Constitutive model of rock under one-dimensional high stress and repeated impact loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 2868–2878.
    [11] 谢理想, 赵光明, 孟祥瑞. 岩石在冲击载荷下的过应力本构模型研究 [J]. 岩石力学与工程学报, 2013, 32(1): 2772–2781.

    XIE Lixiang, ZHAO Guangming, MENG Xiangrui. Research on excess stress constitutive model of rock under impact load [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(1): 2772–2781.
    [12] 蔡灿, 袁晓红, 程少杰. 中低应变率下的岩石损伤本构模型研究 [J]. 岩土力学, 2015, 36(3): 795–802.

    CAI Can, YUAN Xiaohong, CHENG Shaojie, et al. Damage constitutive model of rock under medium and low strain rates [J]. Rock and Soil Mechanics, 2015, 36(3): 795–802.
    [13] 戚承志, 钱七虎. 岩石等脆性材料动力强度依赖应变率的物理机制 [J]. 岩石力学与工程学报, 2003, 22(2): 177–181. doi: 10.3321/j.issn:1000-6915.2003.02.002

    QI Chengzhi, QIAN Qihu. Physical mechanism of dependence of material strength on strain rate for rock-like material [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(2): 177–181. doi: 10.3321/j.issn:1000-6915.2003.02.002
    [14] 戚承志, 王明洋, 钱七虎, 等. 爆炸作用下岩石破裂块度分布特点及其物理机理 [J]. 岩土力学, 2009, 30(S1): 1–4.

    QI Chengzhi, WANG Mingyang, QIAN Qihu, et al. Features and physical mechanism of fragmentation distribution of rock under explosion [J]. Rock and Soil Mechanics, 2009, 30(S1): 1–4.
    [15] 赵坚, 李海波. 莫尔-库仑和霍克-布朗强度准则用于评估脆性岩石动态强度的适用性 [J]. 岩石力学与工程学报, 2003, 22(2): 171–176. doi: 10.3321/j.issn:1000-6915.2003.02.001

    ZHAO Jian, LI Haibo. Estimating the dynamic strength of rock using Mohr- Coulomb and Hoek-Brown criteria [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(2): 171–176. doi: 10.3321/j.issn:1000-6915.2003.02.001
    [16] 马林建, 阳发, 王明洋, 等. 考虑应变率效应的广义Hoek-Brown动态强度准则 [J]. 岩土力学, 2017, 38(s2): 27–32.

    MA Linjian, YANG Fa, WANG Mingyang, et al. Generalized Hoek-Brown dynamic strength criterion incorporating strain rate effect [J]. Rock and Soil Mechanics, 2017, 38(s2): 27–32.
    [17] 宫凤强, 王进, 李夕兵. 岩石压缩特性的率效应与动态增强因子统一模型 [J]. 岩石力学与工程学报, 2018, 37(7): 1586–1595.

    GONG Fengqiang, WANG Jin, LI Xibing. The rate effect of compression characteristics and a unified model of dynamic increasing factor for rock materials [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(7): 1586–1595.
    [18] 岑夺丰, 黄达. 高应变率单轴压缩下岩体裂隙扩展的细观位移模式 [J]. 煤炭学报, 2014, 39(3): 436–444.

    CEN Duofeng, HUANG Da. Mesoscopic displacement modes of crack propagation of rock mass under uniaxial compression with high strain rate [J]. Journal of China Coal Society, 2014, 39(3): 436–444.
    [19] 潘红宇, 葛迪, 张天军, 等. 应变率对岩石裂隙扩展规律的影响 [J]. 煤炭学报, 2018, 43(3): 675–683.

    PAN Hongyu, GE Di, ZHANG Tianjun, et al. Influence of strain rate on the rock fracture propagation law [J]. Journal of China Coal Society, 2018, 43(3): 675–683.
    [20] 刘红岩, 李俊峰, 裴小龙. 单轴压缩下断续节理岩体动态损伤本构模型 [J]. 爆炸与冲击, 2018, 38(2): 316–323. DOI: 10.11883/bzycj-2016-0261.

    LIU Hongyan, LI Junfeng, PEI Xiaolong. A dynamic damage constitutive model for rockmass with intermittent joints under uniaxial compression [J]. Explosion and Shock Waves, 2018, 38(2): 316–323. DOI: 10.11883/bzycj-2016-0261.
    [21] 邵珠山, 李晓照. 基于细观力学的脆性岩石长期蠕变失效研究 [J]. 岩石力学与工程学报, 2016, 35(s1): 2644–2652.

    SHAO Zhushan, LI Xiaozhao. Research on long-term creep failure of brittle rock based on micromechanics [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(s1): 2644–2652.
    [22] LI X Z, SHAO Z S. Investigation of macroscopic brittle creep failure caused by microcrack growth under step loading and unloading in rocks [J]. Rock Mechanics and Rock Engineering, 2016, 49(7): 2581–2593. doi: 10.1007/s00603-016-0953-9
    [23] 单仁亮,薛友松, 张倩. 岩石动态破坏的时效损伤本构模型 [J]. 岩石力学与工程学报, 2003, 22(11): 1771–1776. doi: 10.3321/j.issn:1000-6915.2003.11.003

    SHAN Renliang, XUE Yousong, ZHANG Qian. Time dependent damage model of rock under dynamic loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(11): 1771–1776. doi: 10.3321/j.issn:1000-6915.2003.11.003
    [24] BHAT H S, ROSAKIS A J, SAMMIS C G. A micromechanics based constitutive model for brittle failure at high strain rates [J]. Journal of Applied Mechanics, 2012, 79(3): 031016.
  • 加载中
图(11)
计量
  • 文章访问数:  5781
  • HTML全文浏览量:  1696
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-19
  • 修回日期:  2019-07-19
  • 网络出版日期:  2019-07-25
  • 刊出日期:  2019-08-01

目录

    /

    返回文章
    返回