钨纤维增强金属玻璃复合材料分段弹体侵彻性能研究

陈建良 李继承

陈建良, 李继承. 钨纤维增强金属玻璃复合材料分段弹体侵彻性能研究[J]. 爆炸与冲击, 2020, 40(6): 063201. doi: 10.11883/bzycj-2019-0379
引用本文: 陈建良, 李继承. 钨纤维增强金属玻璃复合材料分段弹体侵彻性能研究[J]. 爆炸与冲击, 2020, 40(6): 063201. doi: 10.11883/bzycj-2019-0379
CHEN Jianliang, LI Jicheng. Ballistic behavior of tungsten fiber/metallic glass matrix composite segmented rods[J]. Explosion And Shock Waves, 2020, 40(6): 063201. doi: 10.11883/bzycj-2019-0379
Citation: CHEN Jianliang, LI Jicheng. Ballistic behavior of tungsten fiber/metallic glass matrix composite segmented rods[J]. Explosion And Shock Waves, 2020, 40(6): 063201. doi: 10.11883/bzycj-2019-0379

钨纤维增强金属玻璃复合材料分段弹体侵彻性能研究

doi: 10.11883/bzycj-2019-0379
基金项目: 国家自然科学基金(11602258)
详细信息
    作者简介:

    陈建良(1991- ),男,硕士,研究实习员, chenjl5229@163.com

    通讯作者:

    李继承(1984- ),男,博士,副研究员, lijc401@caep.cn

  • 中图分类号: O385

Ballistic behavior of tungsten fiber/metallic glass matrix composite segmented rods

  • 摘要: 结合穿甲实验,基于复合材料细观有限元模拟,系统开展针对钨纤维增强金属玻璃复合材料分段弹体侵彻性能的研究,并与复合材料长杆弹进行对比分析。结果表明,相对于复合材料长杆弹显著的穿甲“自锐”行为和优异的侵彻性能,复合材料分段弹体在侵彻过程中的“自锐”特性有所减弱,且弹体结构容易发生分散,进而导致弹体侵彻能力明显降低。另外,分段数目和分段间隔等因素对复合材料分段弹体的侵彻性能具有一定影响,但总体而言,不同构型分段弹体的侵彻能力均弱于复合材料长杆弹。
  • 图  1  钨纤维增强金属玻璃复合材料长杆弹及其侵彻数值模型示意图

    Figure  1.  Tungsten fiber / metallic glass matrix composite of long rod and schemetic sketch of penetrating test

    图  2  钨纤维增强金属玻璃复合材料短杆弹及其有限元模型

    Figure  2.  Tungsten fiber/metallic glass matrix composite short rod and the corresponding finite element geometrical model

    图  3  钨纤维增强金属玻璃复合材料分段弹体结构示意图

    Figure  3.  Schemetic of the tungsten fiber/metallic glass matrix composite segmented rods

    图  4  复合材料长杆弹在不同侵彻条件下的弹靶变形和破坏形貌

    Figure  4.  Deformation and failure of the composite long rod and the target under different penetrating conditions

    图  5  复合材料短杆弹在v0=1 886 m/s条件下的弹靶变形和破坏形貌

    Figure  5.  Deformation and failure of the composite short rod and the target at v0=1 886 m/s

    图  6  弹体残余形貌

    Figure  6.  Residual shape of projectiles after penetration

    图  7  侵彻过程中不同弹体的速度变化曲线

    Figure  7.  Variations of rod velocity during the penetration

    图  8  C1工况(N=3和λ=0)下分段弹体在v0=1 406.8 m/s条件下的侵彻历程

    Figure  8.  Penetrating process of the segmented rod in the case of C1 (N=3 and λ=0) under v0=1 406.8 m/s

    图  9  C7工况(N=3和λ=2)下分段弹体在v0=1 406.8 m/s条件下的侵彻历程

    Figure  9.  Penetrating process of the segmented rod in the case of C7 (N=3 and λ=2) under v0=1 406.8 m/s

    图  10  不同工况条件下弹体关键点位置速度随分段数目的变化特征

    Figure  10.  Velocity characteristics in the key points with segmental number in different cases

    图  11  不同工况条件下弹体侵彻深度随分段数目的变化特征

    Figure  11.  Penetration depth characteristics with the segmental number in different cases

    图  12  不同工况条件下弹体关键点位置速度随分段间隔的变化特征

    Figure  12.  Velocity characteristics in the key points with segmental interval in different cases

    图  13  不同工况条件下弹体侵彻深度随分段间隔的变化特征

    Figure  13.  Penetration depth characteristics with the segmental interval in different cases

    表  1  钨纤维增强金属玻璃复合材料分段弹体结构特征

    Table  1.   Geometries of the tungsten fiber / metallic glass matrix composite segmented rods

    工况NL/mmS/mmλlA/mmlB/mmlC/mm
    C1 336.70036.7 73.4110.0
    C2 618.3 0 036.7 73.4110.0
    C318 6.1 0 036.7 73.4110.0
    C4 336.736.7136.7110.0183.4
    C5 618.318.3155.0128.3201.6
    C618 6.16.1167.2140.6213.9
    C7 336.773.4236.7146.7256.7
    C8 618.336.7273.4183.3293.3
    C918 6.112.2297.8207.8317.8
    下载: 导出CSV

    表  2  锆基金属玻璃的修正热力耦合模型参数[17- 18]

    Table  2.   Mechanical properties of the Zr-based metallic glass and parameters in the modified coupled thermo-mechanical constitutive model[17- 18]

    ρ/(kg·m−3)E/GPaνT0/KTg/KTm/Kf/s−1Ω/m3
    6 125960.363006259931×10132.5×10−29
    V*/m3cV/(J·kg−1·K−1)ξ0ξcαnDΛCΛT
    2×10−294000.050.0650.0530.050.35
    下载: 导出CSV

    表  3  金属材料的Johnson-Cook模型参数

    Table  3.   Johnson-Cook model parameters of metallic materials

    材料ρ/(kg·m−3)E/GPaνTr/KTm/KA/MPaB/MPanCm${\dot \varepsilon _0}$/s−1
    95W钨合金17 9004100.283001 7521 6504500.120.0161.001
    30CrMnMo钢7 8502000.293001 7931 2003100.260.0141.031
    LY-9铝合金2 70068.90.33300 925 2701540.220.1301.341
    材料cV/(J·kg−1·K−1)D1D2D3D4D5c0/(m·s−1)S1γ0α
    95W钨合金1343.000003 8501.441.580
    30CrMnMo钢4773.200004 5781.381.670.47
    LY-9铝合金9102.500005 2001.401.970.48
    下载: 导出CSV

    表  4  侵彻实验数据以及相应数值模拟结果

    Table  4.   Penetrating test data and the corresponding simulation results

    弾型撞击速度v0/
    (m·s−1)
    实验侵彻深度/
    mm
    模拟侵彻深度/mm
    二维三维
    长杆弹1 406.89289.688.9
    1 565.5贯穿贯穿贯穿
    短杆弹1 886.03234.534.7
    下载: 导出CSV
  • 李继承, 陈小伟. 块体玻璃及其复合材料的压缩剪切特性以及侵彻穿甲“自锐”行为 [J]. 力学进展, 2011, 41(5): 480–518. DOI: 10.6052/1000-0992-2011-5-lxjzJ2011-056.

    LI J C, CHEN X W. Compressive-shear behavior and self-sharpening of bulk metallic glasses and their composite materials [J]. Advances in Mechanics, 2011, 41(5): 480–518. DOI: 10.6052/1000-0992-2011-5-lxjzJ2011-056.
    荣光, 黄德武. 钨纤维复合材料穿甲弹芯侵彻时的自锐现象 [J]. 爆炸与冲击, 2009, 29(4): 351–355. DOI: 10.11883/1001-1455(2009)04-0351-05.

    RONG G, HUANG D W. Self-sharpening phenomena of tungsten fiber composite material penetrators during penetration [J]. Explosion and Shock Waves, 2009, 29(4): 351–355. DOI: 10.11883/1001-1455(2009)04-0351-05.
    陈小伟, 李继承, 张方举, 等. 钨纤维增强金属玻璃复合材料弹穿甲钢靶的实验研究 [J]. 爆炸与冲击, 2012, 32(4): 346–354. DOI: 10.11883/1001-1455(2012)04-0346-09.

    CHEN X W, LI J C, ZHANG F J, et al. Experimental research on the penetration of tungsten-fiber /metallic glass-matrix composite material penetrator into steel target [J]. Explosion and Shock Waves, 2012, 32(4): 346–354. DOI: 10.11883/1001-1455(2012)04-0346-09.
    CHEN X W, WEI L M, LI J C. Experimental research on long rod penetration of tungsten fiber / Zr-based metallic glass matrix composite into Q235 steel target [J]. International Journal of Impact Engineering, 2015, 79: 102–116. DOI: 10.1016/j.ijimpeng.2014.11.007.
    LI J C, CHEN X W, HUANG F L. FEM analysis on the “self-sharpening” behavior of tungsten fiber / metallic glass matrix composite long rod [J]. International Journal of Impact Engineering, 2015, 86: 67–83. DOI: 10.1016/j.ijimpeng.2015.07.006.
    ORPHAL D L, FRANZEN R R. Penetration mechanics and performance of segmented rods against metal targets [J]. International Journal of Impact Engineering, 1990, 10: 427–438. DOI: 10.1016/0734-743X(90)90077-9.
    ORPHAL D L, MILLER C W. Penetration performance of non-ideal segmented rods [J]. International Journal of Impact Engineering, 1991, 11(4): 457–461. DOI: 10.1016/0734-743X(91)90013-6.
    WANG X M, ZHAO G Z, SHEN P H. High velocity impact of segmented rods with an aluminum carrier tube [J]. International Journal of Impact Engineering, 1995, 17(8): 915–923. DOI: 10.1016/0734-743X(95)99910-J.
    TATE A. Engineering modelling of some aspects of segmented rod penetration [J]. International Journal of Impact Engineering, 1990, 9: 327–341. DOI: 10.1016/0734-743X(90)90006-H.
    ALY S Y, LI Q M. Numerical investigation of penetration performance of non-ideal segmented rod projectiles [J]. Transactions of Tianjin University, 2008, 14(6): 391–395. DOI: 10.1007/s12209-008-0067-x.
    邓云飞, 张伟, 曹宗胜, 等. 分段弹侵彻效率的数值模拟研究 [J]. 高压物理学报, 2011, 25(3): 251–260. DOI: 10.11858/gywlxb.2011.03.010.

    DENG Y F, ZHANG W, CAO Z S, et al. Numerical investigation of penetration performance of segmented rods penetration into steel target [J]. Chinese Journal of High Pressure Physics, 2011, 25(3): 251–260. DOI: 10.11858/gywlxb.2011.03.010.
    郎林, 陈小伟, 雷劲松. 长杆和分段杆侵彻的数值模拟 [J]. 爆炸与冲击, 2011, 31(2): 127–134. DOI: 10.11883/1001-1455(2011)02-0127-08.

    LANG L, CHEN X W, LEI J S. Numerical simulations on long rod and segmented rods penetrating into steel targets [J]. Explosion and Shock Waves, 2011, 31(2): 127–134. DOI: 10.11883/1001-1455(2011)02-0127-08.
    陈小伟, 郎林. 长径比和分段间隔对理想分段杆侵彻钢靶的影响 [J]. 爆炸与冲击, 2013, 33(S): 1–7.

    CHEN X W, LANG L. Effects of segment length and gap spacing on segmented rods penetrating into steel target [J]. Explosion and Shock Waves, 2013, 33(S): 1–7.
    夏龙祥. 钨纤维增强块体金属非晶复合材料侵彻行为研究[D]. 南京: 南京理工大学, 2013. DOI: 10.7666/d.Y2520745.

    XIA L X. Penetration behaviors of tungsten fiber / bulk metallic glass composite rods [D]. Nanjing: Nanjing University of Science and Technology, 2013. DOI: 10.7666/d.Y2520745.
    LI J C, CHEN X W, HUANG F L. FEM analysis on the deformation and failure of fiber reinforced metallic glass matrix composite [J]. Materials Science and Engineering: A, 2016, 652: 145–166. DOI: 10.1016/j.msea.2015.11.051.
    ZHANG H F, LI H, WANG A M, et al. Synthesis and characteristics of 80 vol.% tungsten (W) fibre-Zr based metallic glass composite [J]. Intermetallics, 2009, 17: 1070–1077. DOI: 10.1016/j.intermet.2009.05.011.
    LI J C, WEI Q, CHEN X W, et al. On the mechanism of deformation and failure in bulk metallic glasses [J]. Materials Science and Engineering: A, 2014, 610: 91–105. DOI: 10.1016/j.msea.2014.04.106.
    LI J C, CHEN X W, HUANG F L. Inhomogeneous deformation in bulk metallic glasses: FEM analysis [J]. Materials Science and Engineering: A, 2015, 620: 333–351. DOI: 10.1016/j.msea.2014.10.013.
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  4541
  • HTML全文浏览量:  1805
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-08
  • 修回日期:  2020-02-24
  • 网络出版日期:  2020-06-02
  • 刊出日期:  2020-06-01

目录

    /

    返回文章
    返回