多孔铁电陶瓷冲击压缩响应与损伤演化的离散元数值模拟

蒋招绣 高光发 王永刚

蒋招绣, 高光发, 王永刚. 多孔铁电陶瓷冲击压缩响应与损伤演化的离散元数值模拟[J]. 爆炸与冲击, 2020, 40(5): 053103. doi: 10.11883/bzycj-2019-0410
引用本文: 蒋招绣, 高光发, 王永刚. 多孔铁电陶瓷冲击压缩响应与损伤演化的离散元数值模拟[J]. 爆炸与冲击, 2020, 40(5): 053103. doi: 10.11883/bzycj-2019-0410
JIANG Zhaoxiu, GAO Guangfa, WANG Yonggang. Discrete element simulation on dynamic response and damage evolution in porous ferroelectric ceramics under shock compression[J]. Explosion And Shock Waves, 2020, 40(5): 053103. doi: 10.11883/bzycj-2019-0410
Citation: JIANG Zhaoxiu, GAO Guangfa, WANG Yonggang. Discrete element simulation on dynamic response and damage evolution in porous ferroelectric ceramics under shock compression[J]. Explosion And Shock Waves, 2020, 40(5): 053103. doi: 10.11883/bzycj-2019-0410

多孔铁电陶瓷冲击压缩响应与损伤演化的离散元数值模拟

doi: 10.11883/bzycj-2019-0410
基金项目: 国家自然科学基金(11972202,11772160);冲击与安全工程教育重点实验室开放课题(Cj201903);爆炸科学与技术国家重点实验室基金(KFJJ18-01M)
详细信息
    作者简介:

    蒋招绣(1986- ),男,博士,jiangzhaoxiu@njust.edu.cn

    通讯作者:

    王永刚(1976- ),男,博士,教授,wangyonggang@nbu.edu.cn

  • 中图分类号: O347.4

Discrete element simulation on dynamic response and damage evolution in porous ferroelectric ceramics under shock compression

  • 摘要: 采用flat-joint粘结模型,建立多孔铁电陶瓷在一维应变冲击压缩下的PFC (particle flow code)颗粒流离散元模型,通过数值模拟再现了平板撞击实验中实测的自由面速度剖面历史,并揭示了多孔铁电陶瓷在冲击压缩下的响应过程与损伤演化机制。多孔铁电陶瓷在冲击压缩下的响应过程可分4个阶段:弹性变形、失效蔓延、冲击压溃变形、冲击Hugoniot平衡状态;其中,失效蔓延的内在机制是由剪切裂纹的成核与增长,而冲击压溃变形的主要机制是孔洞的塌缩以及层状剪切裂纹的形成与扩展;冲击速度与孔隙率对铁电陶瓷的响应有显著的影响,Hugoniot弹性极限强烈依赖于孔隙率,但与冲击速度的大小无关,宏观损伤累积随着冲击速度和孔隙率的增加而增加。
  • 图  1  flat-joint接触模型几何示意图[17]

    Figure  1.  The schematic diagram of flat-joint contact model[17]

    图  2  离散元宏观模型

    Figure  2.  The macroscopic model for discrete element

    图  3  多孔未极化PZT95/5铁电陶瓷SEM照片

    Figure  3.  SEM photograph of porous unpoled PZT95/5 ferroelectric ceramics

    图  4  实验与模拟自由面速度剖面

    Figure  4.  Free surface velocity profiles between experiment and simulation

    图  5  波剖面粒子速度与损伤分布

    Figure  5.  Particle-velocity profiles anddamage distribution

    图  6  不同时刻细观损伤分布

    Figure  6.  Microscopic damage distribution at different times

    图  7  不同冲击速度的自由面速度剖面

    Figure  7.  Free surface velocity profiles at different impact velocities

    图  8  损伤度与冲击速度的关系

    Figure  8.  Relation of damage degree to impact velocity

    图  9  不同冲击速度下Hugoniot平衡状态时试样的损伤分布

    Figure  9.  Damage distribution in equilibrium Hugoniot states at different impact velocities

    图  10  不同孔隙率试样的自由面速度剖面

    Figure  10.  Free surface velocity profiles of different porosity samples

    图  11  不同孔隙率试样的损伤分布

    Figure  11.  Damage distribution of different porosity samples

    表  1  实验条件

    Table  1.   Experimental conditions

    样品密度/(g·cm−3)孔隙率/%试样厚度/mm飞片厚度/mm冲击速度/(m·s−1)
    PZT1#17.440 6.963.634.02249.4
    PZT2#17.06011.753.583.98254.8
    PZT3#16.67016.563.624.06308.6
    PZT3#26.80014.993.544.04258.3
    PZT3#36.81014.893.604.08167.8
    PZT3#46.74015.883.583.94117.2
    下载: 导出CSV

    表  2  模型中主要参数

    Table  2.   The main parameters in model

    材料密度/(g·cm−3)弹性模量/GPa泊松比法向拉伸强度/MPa内聚力强度/MPa摩擦角/(°)
    试样8.000 88.00.211 200.0600.018.0
    飞片8.900110.00.35
    下载: 导出CSV
  • [1] TUTTLE B A, YANG P, GIESKE J H. Pressure-induced phase transformation of controlled-porosity Pb(Zr0.95Ti0.05)O3 ceramics [J]. Journal of the American Ceramic Society, 2001, 84(6): 1260–1264. DOI: 10.1111/j.1151-2916.2001.tb00826.x.
    [2] FENG N, NIE H, CHEN X, et al. Depoling of porous Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ferroelectric ceramics under shock wave load [J]. Current Applied Physics, 2010, 10(6): 1387–1390. DOI: 10.1016/j.cap.2010.04.012.
    [3] 李成华, 蒋招绣, 王永刚, 等. 高应变率下多孔未极化PZT95/5铁电陶瓷的非线性力学为 [J]. 爆炸与冲击, 2018, 38(4): 707–715. DOI: 10.11883/bzycj-2016-0329.

    LI C H, JIANG Z X, WANG Y G, et al. Nonlinear mechanical response of PZT95/5 ferroelectric ceramics under high strain rate loading [J]. Explosion and Shock Waves, 2018, 38(4): 707–715. DOI: 10.11883/bzycj-2016-0329.
    [4] 刘高旻, 刘雨生, 张毅, 等. PZT铁电陶瓷及其在脉冲能源中的应用 [J]. 材料导报, 2006, 20(6): 74–77. DOI: 10.3321/j.issn:1005-023X.2006.06.020.

    LIU G M, LIU Y S, ZHANG Y, et al. PZT ferroelectric ceramic for shock driver pulsed supply [J]. Materials Reports, 2006, 20(6): 74–77. DOI: 10.3321/j.issn:1005-023X.2006.06.020.
    [5] SHKURATOV S I, BAIRD J, ANTIPOV V G, et al. Depolarization mechanisms of PbZr0.52Ti0.48O3 and PbZr0.95Ti0.05O3 poled ferroelectrics under high strain rate loading [J]. Applied Physics Letters, 2014, 104(21): 212901. DOI: 10.1063/1.4879545.
    [6] DUNGAN R H, STORZ L J. Relation between chemical, mechanical, and electrical properties of Nb2O5-Modified-95Mol% PbZrO3-5Mol% PbTiO3 [J]. Journal of the American Ceramic Society, 1985, 68(10): 530–533. DOI: 10.1111/j.1151-2916.1985.tb11518.x.
    [7] 喻寅, 王文强, 杨佳, 等. 多孔脆性介质冲击波压缩破坏的细观机理和图像 [J]. 物理学报, 2012, 61(4): 48103. DOI: 10.7498/aps.61.048103.

    YU Y, WANG W Q, YANG J, et al. Mesoscopic picture of fracture in porous brittle material under shock wave compression [J]. Acta Physica Sinica, 2012, 61(4): 48103. DOI: 10.7498/aps.61.048103.
    [8] SETCHELL R E. Shock wave compression of the ferroelectric ceramic Pb0.99(Zr0.95Ti0.05)0.9-Nb0.02O3: microstructural effects [J]. Journal of Applied Physics, 2007, 101: 053525. DOI: 10.1063/1.2697428.
    [9] RASORENOV S V, KANEL G I. The fracture of glass under high-pressure impulsive loading [J]. High Pressure Research, 1991(6): 225–232. DOI: 10.1080/08957959108202508.
    [10] GRADY D E. Dynamic failure in brittle solids [R]. Nasa Sti/recon Technical Report N, 1994: 95.
    [11] SETCHELL R E. Shock wave compression of the ferroelectric ceramic Pb0.99(Zr0.95Ti0.05)0.9-Nb0.02O3: Hugoniot states and constitutive mechanical properties [J]. Journal of Applied Physics, 2003, 94(1): 1519–1525. DOI: 10.1063/1.1578526.
    [12] 赵铮, 李晓杰, 陶钢. 冲击载荷下孔隙塌缩过程的数值模拟 [J]. 爆炸与冲击, 2009, 29(3): 289–294. DOI: 10.3321/j.issn:1001-1455.2009.03.011.

    ZHAO Z, LI X J, TAO G, et al. Numerical simulation of the process of pore collapse under shock load [J]. Explosion and Shock Waves, 2009, 29(3): 289–294. DOI: 10.3321/j.issn:1001-1455.2009.03.011.
    [13] ESPINOSA H D, ZSVATTIERI P D. A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials: part II: numerical examples [J]. Mechanics of Materials, 2003, 35(3-6): 365–394. DOI: 10.1016/S0167-6636(02)00287-9.
    [14] BRANICIO P S, KALIA R K, NAKANO A, et al. Atomistic damage mechanisms during hypervelocity projectile impact on AIN: a large-scale parallel molecular dynamics simulation study [J]. Journal of the Mechanics and Physics of Solids, 2008, 56(5): 1955–1988. DOI: 10.1016/j.jmps.2007.11.004.
    [15] YU Y, WANG W Q, HE H L, et al. Modeling multiscale evolution of numerous voids in shocked brittle material [J]. Physical Review E, 2014, 89(4): 043309. DOI: 10.1103/PhysRevE.89.043309.
    [16] YU Y, WANG W Q, HE H L, et al. Mesoscopic deformation features of shocked porous ceramic: polycrystalline modeling and experimental observations [J]. Journal of Applied Physics, 2015, 117: 125901. DOI: 10.1063/1.4916244.
    [17] POTYONDY D O. A flat-jointed bonded-particle material for hard rock [C]//The 46th U.S. Rock Mechanics/Geomechanics Symposium. Chicago, USA: ARMA, 2012. https://www.onepetro.org/conference-paper/ARMA-2012-501.
    [18] JIANG Z X, WANG Y G, NIE H C, et al. Influence of porosity on nonlinear mechanical properties of unpoled porous Pb(Zr0.95Ti0.05)O3 ceramics under uniaxial compression [J]. Mechanics of Materials, 2016, 104: 139–144. DOI: 10.1016/j.mechmat.2016.11.001.
    [19] WENG J D, WANG X, MA Y, et al. A compact all-fiber displacement interferometer for measuring the foil velocity driven by laser [J]. Review of Scientific Instruments, 2008, 79(11): 111101. DOI: 10.1063/1.3020700.
    [20] CUNDALL P A, STRACK O D L. A discrete numerical model for granular assembles [J]. Geotechnique, 1979, 29(1): 47–65. DOI: 10.1680/geot.1979.29.1.47.
    [21] POTYONDY D O, CUNDALL P A. A bonded-particle model for rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41: 1329–1364. DOI: 10.1016/j.ijrmms.2004.09.011.
    [22] CHO N, MARTIN C D, SEGO D C. A clumped particle model for rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(7): 1329–1364. DOI: 10.1016/j.ijrmms.2007.02.002.
    [23] CHEN M W, MCCAULEY J W, DANDEKAR D P, et al. Dynamic plasticity and failure of high-purity alumina under shock loading [J]. Nature Materials, 2006, 5(8): 614–618. DOI: 10.1038/nmat1689.
    [24] 熊迅, 李天密, 周风华, 等. 石英玻璃圆环高速膨胀碎裂过程的离散元模拟 [J]. 力学学报, 2018, 50(3): 622–632. DOI: 10.6052/0459-1879-17-410.

    XIONG X, LI T M, ZHOU F H, et al. Discrete element simulations of the high velocity expansion and fragmentation of quartz glass rings [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 622–632. DOI: 10.6052/0459-1879-17-410.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  3858
  • HTML全文浏览量:  1114
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-23
  • 修回日期:  2019-11-24
  • 刊出日期:  2020-05-01

目录

    /

    返回文章
    返回