刚性钝头弹体正冲击GH4169间隔靶的消耗功分析

孙永壮 吕中杰 黄风雷 刘彦

孙永壮, 吕中杰, 黄风雷, 刘彦. 刚性钝头弹体正冲击GH4169间隔靶的消耗功分析[J]. 爆炸与冲击, 2020, 40(8): 083302. doi: 10.11883/bzycj-2019-0457
引用本文: 孙永壮, 吕中杰, 黄风雷, 刘彦. 刚性钝头弹体正冲击GH4169间隔靶的消耗功分析[J]. 爆炸与冲击, 2020, 40(8): 083302. doi: 10.11883/bzycj-2019-0457
SUN Yongzhuang, LYU Zhongjie, HUANG Fenglei, LIU Yan. Consumption work of GH4169 spacer plates in positive impact by blunt rigid projectiles[J]. Explosion And Shock Waves, 2020, 40(8): 083302. doi: 10.11883/bzycj-2019-0457
Citation: SUN Yongzhuang, LYU Zhongjie, HUANG Fenglei, LIU Yan. Consumption work of GH4169 spacer plates in positive impact by blunt rigid projectiles[J]. Explosion And Shock Waves, 2020, 40(8): 083302. doi: 10.11883/bzycj-2019-0457

刚性钝头弹体正冲击GH4169间隔靶的消耗功分析

doi: 10.11883/bzycj-2019-0457
基金项目: 国防基础科研重点项目(2016602B003)
详细信息
    作者简介:

    孙永壮(1995- ),男,硕士,sunforeverzhuang@163.com

    通讯作者:

    吕中杰(1968- ),男,博士,副教授,lvzhongjie@bit.edu.cn

  • 中图分类号: O385; TJ102.4

Consumption work of GH4169 spacer plates in positive impact by blunt rigid projectiles

  • 摘要: 在380~680 m/s的弹体初速范围内,开展了直径8 mm钨球正冲击GH4169间隔靶实验,测得弹体初速、余速及靶板形貌,明显看出第1层板挠度较小,主要表现为剪切破坏,并产生了杯状挤凿块,第3层板挠度较大,主要表现为拉伸破坏。提出了间隔靶消耗功计算公式,结合剪切冲塞模型和建立的挤凿块速度模型计算了刚性钝头弹体冲击间隔靶中各层板的消耗功。结果表明,第2~3层板的单位面密度消耗功远高于相同面密度的第1层板,这与各层板的变形和失效形式密切相关。消耗功分析可用于定量描述间隔靶中各层板的抗侵彻性能。
  • 图  1  实验设备布置

    Figure  1.  Experimental equipment layout

    图  2  间隔靶结构示意图

    Figure  2.  Schematic of spacer plates structure

    图  3  GH4169间隔靶的贯穿情况

    Figure  3.  Penetration type of GH4169 spacer plates

    图  4  GH4169间隔靶的弹体初速和余速关系

    Figure  4.  Residual velocity curve for GH4169 spacer plates

    图  5  GH4169间隔靶的各层板挠度

    Figure  5.  Deflection of GH4169 spacer plates

    图  6  实验后GH4169间隔靶截面

    Figure  6.  Section of GH4169 spacer plates after experiment

    图  7  GH4169间隔靶消耗功示意图

    Figure  7.  Schematic of consumption work of spacer plates

    图  8  弹体余速与挤凿块速度关系

    Figure  8.  Residual velocity of projectiles and plug velocity

    图  9  弹体贯穿间隔靶各层板的消耗功

    Figure  9.  Consumption work of the spacer plates

    图  10  消耗功的比值

    Figure  10.  The ratio of consumption work

    图  11  单位面密度消耗功的比值

    Figure  11.  The ratio of unit area density consumption work

    表  1  GH4169(固溶处理)的物理和力学性能[8]

    Table  1.   Physical and mechanical properties of GH4169 (solution treatment)

    执行标准ρ/(g·cm−3)μTm/°Cσb/MPaσs0.2/MPaE/GPaG/GPaH/HRBδ5/%
    GB/T 14992~20058.240.31260~132096555020579.24≤102≥30
    下载: 导出CSV

    表  2  直径8 mm钨球冲击GH4169间隔靶实验结果

    Table  2.   Experimental results of 8 mm diameter tungsten ball impacting GH4169 spacer plates

    实验mp/gh1/mmh2/mmh3/mmvi/(m·s−1)vr/(m·s−1)Z1/mmZ2/mmZ3/mm贯穿类型
    14.693.141.073.18510.95.877.09 6.41未贯穿
    24.703.141.073.18517.72.187.72 7.30未贯穿
    34.693.141.073.18541.43.288.20 8.18未贯穿
    44.703.141.073.18569.41.917.83 7.98未贯穿
    54.703.121.103.10566.73.878.3510.92未贯穿
    61)4.703.141.073.18563.68.2312.18未贯穿
    74.703.181.053.14562.62.986.68 9.78未贯穿
    82)4.703.181.053.14685.72.915.8415.86贯穿
    94.703.161.073.13388.51.672.44 2.40未贯穿
    104.693.161.073.13587.80.888.6113.74未贯穿
    114.703.161.073.13643.4199.72.019.0113.47贯穿
    124.693.161.073.13618.4158.41.007.6413.85贯穿
    133)4.703.131.093.15627.11.457.48未贯穿
    144.723.131.093.15641.00.849.1614.24未贯穿
    154.693.131.093.15673.0200.40.899.94 6.81贯穿
    164.713.131.093.15647.2132.11.098.71贯穿
    174.703.161.073.13668.4200.92.258.5113.52贯穿
     1) 弹托嵌入第1层板;2) 弹体余速未测到;3) 弹体嵌入第3层板。
    下载: 导出CSV

    表  3  根据实验数据拟合得到的Recht-Ipson模型参数

    Table  3.   Parameters in the Recht-Ipson model obtained by fitting experiments

    拟合曲线v50/(m·s−1)ap
    v50a603.10.424.49
    v50b644.10.405.39
    下载: 导出CSV

    表  4  依据实验数据获得的模型参数

    Table  4.   Model parameters obtained from experimental data

    弹体类型kvsrjump/(m·s−1)
    平头弹体1.61 37.21
    半球形头弹体0.99124.28
    球形弹体0.93160.52
    下载: 导出CSV
  • [1] HANK J M, MURPHY J S, MUTZMAN R C. The X-51A scramjet engine flight demonstration program [C] // Proceedings of the 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Dayton: AIAA Press, 2008: 1-13. DOI: 10.2514/6.2008-2540.
    [2] 曾慧, 白菡尘, 朱涛. X-51A超燃冲压发动机及飞行验证计划 [J]. 导弹与航天运载技术, 2010(1): 57–61. DOI: 10.3969/j.issn.1004-7182.2010.01.012.

    ZENG H, BAI H C, ZHU T. X-51A scramjet engine flight and demonstration program [J]. Missiles and Space Vehicles, 2010(1): 57–61. DOI: 10.3969/j.issn.1004-7182.2010.01.012.
    [3] ZHANG W, DENG Y F, CAO Z S, et al. Experimental investigation on the ballistic performance of monolithic and layered metal plates subjected to impact by blunt rigid projectiles [J]. International Journal of Impact Engineering, 2012, 49: 115–129. DOI: 10.1016/j.ijimpeng.2012.06.001.
    [4] 肖新科. 双层金属靶的抗侵彻性能和Taylor杆的变形与断裂[D]. 哈尔滨: 哈尔滨工业大学, 2010: 45−51.
    [5] BEN-DOR G, DUBINSKY A, ELPERIN T. New results on ballistic performance of multi-layered metal shields: review [J]. Theoretical and Applied Fracture Mechanics, 2017, 88: 1–8. DOI: 10.1016/j.tafmec.2016.11.002.
    [6] DEY S, BØRVIK T, TENG X, et al. On the ballistic resistance of double-layered steel plates: An experimental and numerical investigation [J]. International Journal of Solids and Structures, 2007, 44(20): 6701–6723. DOI: 10.1016/j.ijsolstr.2007.03.005.
    [7] 任杰, 徐豫新, 王树山. 超高强度平头圆柱形弹体对低碳合金钢板的高速撞击实验 [J]. 爆炸与冲击, 2017, 37(4): 629–636. DOI: 10.11883/1001-1455(2017)04-0629-08.

    REN J, XU Y X, WANG S S. High-speed impact of low-carbon alloy steel plates by ultra-high strength blunt projectiles [J]. Explosion and Shock Waves, 2017, 37(4): 629–636. DOI: 10.11883/1001-1455(2017)04-0629-08.
    [8] 庄景云, 杜金辉, 邓群. 变形高温合金GH4169组织与性能[M]. 北京: 冶金工业出版社, 2011: 13−26.
    [9] 高润芳, 韩峰, 马晓青, 等. 几种钨合金破片垂直侵彻装甲钢板极限穿透速度研究 [J]. 弹箭与制导学报, 2005, 25(4): 57–59, 62. DOI: 10.3969/j.issn.1673-9728.2005.04.020.

    GAO R F, HAN F, MA X Q, et al. Investigation of tungsten fragments of different shape penetrating armour plate [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2005, 25(4): 57–59, 62. DOI: 10.3969/j.issn.1673-9728.2005.04.020.
    [10] PEREIRA J M, LERCH B A. Effects of heat treatment on the ballistic impact properties of Inconel 718 for jet engine fan containment applications [J]. International Journal of Impact Engineering, 2001, 25(8): 715–733. DOI: 10.1016/S0734-743X(01)00018-5.
    [11] 王海福, 刘志雄, 冯顺山. 钢球侵彻钛合金靶板弹道极限速度 [J]. 北京理工大学学报, 2003, 23(2): 162–164. DOI: 10.3969/j.issn.1001-0645.2003.02.008.

    WANG H F, LIU Z X, FENG S S. Ballistics limit velocity for spherical steel fragments penetratig titanium-alloy target plates [J]. Transactions of Beijing Institute of Technology, 2003, 23(2): 162–164. DOI: 10.3969/j.issn.1001-0645.2003.02.008.
    [12] RECHT R F, IPSON T W. Ballistic perforation dynamics [J]. Journal of Applied Mechanics, 1963, 30(3): 384–390. DOI: 10.1115/1.3636566.
    [13] 钱伟长. 穿甲力学[M]. 北京: 国防工业出版社, 1984: 280−288.
    [14] ANDERSON Jr C E. Analytical models for penetration mechanics: a review [J]. International Journal of Impact Engineering, 2017, 108: 3–26. DOI: 10.1016/j.ijimpeng.2017.03.018.
    [15] 司马玉洲, 肖新科, 王要沛, 等. 7A04-T6高强铝合金板对平头杆弹抗侵彻行为的试验与数值模拟研究 [J]. 振动与冲击, 2017, 36(11): 1–7, 13. DOI: 10.13465/j.cnki.jvs.2017.11.001.

    SIMA Y Z, XIAO X K, WANG Y P, et al. Tests and numerical simulation for anti-penetrating behavior of a high strength 7A04-T6 aluminium alloy plate against a blunt projectile’s impact [J]. Journal of Vibration and Shock, 2017, 36(11): 1–7, 13. DOI: 10.13465/j.cnki.jvs.2017.11.001.
    [16] BØRVIK T, LANGSETH M, HOPPERSTAD O S, et al. Ballistic penetration of steel plates [J]. International Journal of Impact Engineering, 1999, 22(9−10): 855–886. DOI: 10.1016/S0734-743X(99)00011-1.
    [17] BØRVIK T, HOPPERSTAD O S, LANGSETH M, et al. Effect of target thickness in blunt projectile penetration of Weldox 460 E steel plates [J]. International Journal of Impact Engineering, 2003, 28(4): 413–464. DOI: 10.1016/S0734-743X(02)00072-6.
    [18] BØRVIK T, LANGSETH M, HOPPERSTAD O S, et al. Perforation of 12 mm thick steel plates by 20 mm diameter projectiles with flat, hemispherical and conical noses: Part I: experimental study [J]. International Journal of Impact Engineering, 2002, 27(1): 19–35. DOI: 10.1016/S0734-743X(01)00034-3.
    [19] CZARNECKI G J. Estimation of the v50 using semi-empirical (1-point) procedures [J]. Composites Part B: Engineering, 1998, 29(3): 321–329. DOI: 10.1016/s1359-8368(97)00032-2.
    [20] 陈小伟. 穿甲/侵彻问题的若干工程研究进展 [J]. 力学进展, 2009, 39(3): 316–351. DOI: 10.6052/1000-0992-2009-3-J2007-090.

    CHEN X W. Advances in the penetration/perforation of rigid projectiles [J]. Advances in Mechanics, 2009, 39(3): 316–351. DOI: 10.6052/1000-0992-2009-3-J2007-090.
    [21] CHEN X W, LI Q M. Shear plugging and perforation of ductile circular plates struck by a blunt projectile [J]. International Journal of Impact Engineering, 2003, 28(5): 513–536. DOI: 10.1016/S0734-743X(02)00077-5.
    [22] 陈小伟, 杨云斌, 路中华. 带前舱物的钝头弹对金属靶的正穿甲分析 [J]. 爆炸与冲击, 2006, 26(4): 294–302. DOI: 10.11883/1001-1455(2006)04-0294-09.

    CHEN X W, YANG Y B, LU Z H. Perforation of metallic plates struck by a blunt projectile with a nose-cabin-column [J]. Explosion and Shock Waves, 2006, 26(4): 294–302. DOI: 10.11883/1001-1455(2006)04-0294-09.
    [23] ZHAO Y P. Prediction of structural dynamic plastic shear failure by Johnson’s damage number [J]. Forschung im Ingenieurwesen, 1998, 63(11/12): 349–352. DOI: 10.1007/PL00010753.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  3941
  • HTML全文浏览量:  1310
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-04
  • 修回日期:  2020-03-23
  • 网络出版日期:  2020-07-25
  • 刊出日期:  2020-08-01

目录

    /

    返回文章
    返回