核工程钢板混凝土墙防撞击贯穿实用计算方法

王菲 刘晶波 韩鹏飞 宝鑫 王晓峰 李述涛

王菲, 刘晶波, 韩鹏飞, 宝鑫, 王晓峰, 李述涛. 核工程钢板混凝土墙防撞击贯穿实用计算方法[J]. 爆炸与冲击, 2020, 40(10): 105101. doi: 10.11883/bzycj-2020-0020
引用本文: 王菲, 刘晶波, 韩鹏飞, 宝鑫, 王晓峰, 李述涛. 核工程钢板混凝土墙防撞击贯穿实用计算方法[J]. 爆炸与冲击, 2020, 40(10): 105101. doi: 10.11883/bzycj-2020-0020
WANG Fei, LIU Jingbo, HAN Pengfei, BAO Xin, WANG Xiaofeng, LI Shutao. A practical calculation method of steel plate concrete walls to resist perforation from missile impact in nuclear engineering[J]. Explosion And Shock Waves, 2020, 40(10): 105101. doi: 10.11883/bzycj-2020-0020
Citation: WANG Fei, LIU Jingbo, HAN Pengfei, BAO Xin, WANG Xiaofeng, LI Shutao. A practical calculation method of steel plate concrete walls to resist perforation from missile impact in nuclear engineering[J]. Explosion And Shock Waves, 2020, 40(10): 105101. doi: 10.11883/bzycj-2020-0020

核工程钢板混凝土墙防撞击贯穿实用计算方法

doi: 10.11883/bzycj-2020-0020
基金项目: 国家科技重大专项(2018ZX06902016)
详细信息
    作者简介:

    王 菲(1984- ),女,博士研究生,讲师,wangf17@mails.tsinghua.edu.cn

    通讯作者:

    刘晶波(1956- ),男,博士,教授,liujb@mail.tsinghua.edu.cn

  • 中图分类号: O385

A practical calculation method of steel plate concrete walls to resist perforation from missile impact in nuclear engineering

  • 摘要: 针对带对拉钢筋的双钢板混凝土墙,研究了双钢板混凝土墙防贯穿计算方法,建立了基于能量法的防贯穿计算公式。在已知弹体和钢板混凝土墙体材料与几何相关参数时,利用防贯穿实用计算公式可对带对拉钢筋的核工程双钢板混凝土墙体贯穿速度以及弹体剩余速度进行计算,避免了复杂的结构抗撞击反应动力时程数值分析。为验证公式的可靠性,将公式计算结果与已有刚性弹体撞击双钢板混凝土墙实验结果及其动力有限元计算结果进行对比,结果表明:防贯穿实用计算公式可以正确判断双钢板混凝土墙的贯穿状态,实用计算公式给出的弹体剩余速度与实验结果符合良好。为进一步验证公式的适用范围,将公式计算结果与共10个工况的飞机发动机撞击双钢板混凝土墙的有限元计算结果进行了对比分析,结果表明:除1个工况计算结果偏差略超10%外,其余工况的偏差均在10%以内,说明该计算方法合理可行。
  • 图  1  弹体撞击带对拉钢筋的双钢板混凝土墙机理图

    Figure  1.  Mechanism diagram of missile impacting on SC wall with tied bars

    图  2  弹体及弹-靶有限元模型(SCS-175-6T)

    Figure  2.  Overview of missile and missile-wall FE models (SCS-175-6T)

    图  3  双钢板毁伤情况(SCS-175-6T)

    Figure  3.  Failure of steel plates (SCS-175-6T)

    图  4  双钢板毁伤情况(SCS-250-6T)

    Figure  4.  Failure of steel plates (SCS-250-6T)

    图  5  不同撞击速度下双钢板混凝土墙(SCS-175-4T)后钢板毁伤情况

    Figure  5.  Rear steel plates failure shape of SC walls at different impact velocities (SCS-175-4T)

    图  6  不同撞击速度下弹体的速度时程曲线(SCS-175-4T)

    Figure  6.  Velocity-time curves of the missile at different impact velocities (SCS-175-4T)

    图  7  工况C 5、C6飞机发动机有限元模型

    Figure  7.  Aircraft engine FE models of cases C5 and C6

    图  8  工况C6有限元模型

    Figure  8.  FE model of case C6

    表  1  钢板计算参数

    Table  1.   Calculation parameters of steel plate

    密度${\rho _{\rm{s}}}$/(kg·m−3)屈服强度$\sigma $ /MPa弹性模量Es /GPa厚度Hs/mm无量纲参数B应变强化指数n
    7.8×10330721061.10.08[10]
    下载: 导出CSV

    表  2  混凝土计算参数

    Table  2.   Calculation parameters of concrete

    密度${\rho _{\rm{c}}}$/(kg·m−3)抗压强度fc/MPa抗拉强度设计值ft1 / MPa厚度Hc/m
    2.37×10350.0751.90.163或0.238
    下载: 导出CSV

    表  3  公式计算及实验结果

    Table  3.   Formula calculation and test results

    钢板撞击速度v/(m·s−1)贯穿速度vp/(m·s−1)破坏形式剩余速度vkr/ (m·s−1)
    公式计算
    (未考虑栓钉)
    公式计算
    (考虑栓钉)
    公式计算实验公式计算
    (未考虑栓钉)
    公式计算
    (考虑栓钉)
    实验
    SCS-175-6T152.4140.7143.8贯穿贯穿41.534.333.9
    SCS-250-6T147.7155.0159.7未贯穿未贯穿000
    下载: 导出CSV

    表  4  有限元模型材料(MAT003)参数

    Table  4.   Material parameters for FE models

    组件密度/(kg·m−3)屈服强度/MPa杨氏模量 /GPa切线模量 /MPa泊松比侵蚀参数失效应变
    CP
    钢板(6 mm)7.8×1033072106030.34050.28
    栓钉7.8×1033452105040.34050.30
    弹体7.8×1032502105020.34050.30
    下载: 导出CSV

    表  5  数值计算和实验结果

    Table  5.   Numerical analysis and test results

    钢板撞击速度v/(m·s−1)破坏形式剩余速度vkr/(m·s−1)
    有限元模拟实验有限元模拟实验
    SCS-175-6T152.4贯穿贯穿28.733.9
    SCS-250-6T147.7鼓包鼓包 0 0
    下载: 导出CSV

    表  6  双钢板混凝土墙贯穿速度对比

    Table  6.   Comparison of perforation velocities of SC walls

    钢板贯穿速度/(m·s−1)偏差/%
    公式计算(未考虑栓钉)公式计算(考虑栓钉)有限元分析未考虑栓钉考虑栓钉
    SCS-175-6T140.7143.8148−4.93−2.84
    SCS-250-6T155.0159.7161−3.73−0.81
    下载: 导出CSV

    表  7  飞机发动机撞击双钢板混凝土墙的贯穿速度对比

    Table  7.   Comparison of perforation velocities for SC walls subjected to an aircraft engine

    工况发动机类型发动机质量/kg发动机直径/m发动机总长/m混凝土墙厚度/m贯穿速度/(m·s−1)偏差/%
    公式计算有限元分析
    C1实心 9980.50.6500.48128.3126 1.83
    C2圆柱壳 9980.50.6500.48128.3129−0.54
    C3实心 2 0031.01.9500.48169.9162 4.88
    C4圆柱壳 2 0031.01.9500.48169.9174−2.36
    C5实心 4 5001.53.0000.48166.915110.53
    C6圆柱壳 4 5001.53.0000.48166.9159 4.97
    C7实心 8 0142.04.2250.98178.2178 0.11
    C8圆柱壳 8 0142.04.2250.98178.2187−4.71
    C9实心17 3392.56.0000.98147.9137 7.96
    C10圆柱壳17 3392.56.0000.98147.9146 1.30
    下载: 导出CSV
  • United States Nuclear Regulatory Commission. 50.150 aircraft impact assessment [DB/OL]. (2009-06-12)[2019-10-02]. https://www.nrc.gov/reading-rm/doc-collections/cfr/part050/part050-0150.html.
    Nuclear Energy Institute. NEI 07-13 methodology for performing aircraft impact assessments for new plant designs [S]. Washington: Nuclear Energy Institute, 2011.
    U.S. Nuclear Regulatory Commission. DG-1176 Guidance for the assessment of beyond-design-basis aircraft impacts [S]. Washington: U.S. Nuclear Regulatory Commission, 2009.
    国家核安全局. 核动力厂设计安全规定: HAF 102-2016 [S]. 北京: 国家核安全局, 2016: 24−25.
    刘晶波, 韩鹏飞, 林丽, 等. 飞机撞击建(构)筑物研究进展 [J]. 爆炸与冲击, 2016, 36(2): 269–278. DOI: 10.11883/1001-1455(2016)02-0269-10.

    LIU J B, HAN P F, LIN L, et al. Research progress of buildings and structures subjected to aircraft impact [J]. Explosion and Shock Waves, 2016, 36(2): 269–278. DOI: 10.11883/1001-1455(2016)02-0269-10.
    刘晶波, 韩鹏飞, 郑文凯, 等. 商用飞机撞击核电站屏蔽厂房数值模拟 [J]. 爆炸与冲击, 2016, 36(3): 391–399. DOI: 10.11883/1001-1455(2016)03-0391-09.

    LIU J B, HAN P F, ZHENG W K, et al. Numerical investigation of shield building for nuclear power plant subjected to commercial aircraft impact [J]. Explosion and Shock Waves, 2016, 36(3): 391–399. DOI: 10.11883/1001-1455(2016)03-0391-09.
    LIU J B, HAN P F. Numerical analyses of a shield building subjected to a large commercial aircraft impact [J]. Shock and Vibration, 2018, 2018(6): 1–17.
    ARROS J, DOUMBALSKI N. Analysis of aircraft impact to concrete structures [J]. Nuclear Engineering and Design, 2007, 237(12−13): 1241–1249. DOI: 10.1016/j.nucengdes.2006.09.044.
    THAI D K, KIM S E. Safety assessment of a nuclear power plant building subjected to an aircraft crash [J]. Nuclear Engineering and Design, 2015, 293: 38–52. DOI: 10.1016/j.nucengdes.2015.07.053.
    BRUHL J C, VARMA A H, JOHNSON W H. Design of composite SC walls to prevent perforation from missile impact [J]. International Journal of Impact Engineering, 2015, 75: 75–87. DOI: 10.1016/j.ijimpeng.2014.07.015.
    CHEN X Y, HUANG X L, LIANG G J. Comparative analysis of perforation models of metallic plates by rigid sharp-nosed projectiles [J]. International Journal of Impact Engineering, 2011, 38(7): 613–621. DOI: 10.1016/j.ijimpeng.2010.12.005.
    FORRESTAL M J, WARREN T L. Perforation equations for conical and ogival nose rigid projectiles into aluminum target plates [J]. International Journal of Impact Engineering, 2009, 36(2): 220–225. DOI: 10.1016/j.ijimpeng.2008.04.005.
    CHEN X Y, LI Q M. Deep penetration of a non-deformable projectile with different geometrical characteristics [J]. International Journal of Impact Engineering, 2002, 27(6): 619–637. DOI: 10.1016/S0734-743X(02)00005-2.
    LI Q M, CHEN X W. Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile [J]. International Journal of Impact Engineering, 2003, 28(1): 93–116. DOI: 10.1016/S0734-743X(02)00037-4.
    LI Q M, REID S R, WEN H M, et al. Local impact effects of hard missiles on concrete targets [J]. International Journal of Impact Engineering, 2005, 32(1−4): 224–284. DOI: 10.1016/j.ijimpeng.2005.04.005.
    KAR A K. Residual velocity for projectiles [J]. Nuclear Engineering and Design, 1979, 53(1): 87–95. DOI: 10.1016/0029-5493(79)90042-6.
    中华人民共和国住房和城乡建设部. 混凝土结构设计规范(2015版): GB 50010-2010 [S]. 北京: 中国建筑工业出版社, 2011: 103−106.
    KIM K S, MOON I H, CHOI H J, et al. A preliminary study on the local impact behavior of steel-plate concrete walls [J]. Annals of Nuclear Energy, 2017, 102: 210–219. DOI: 10.1016/j.anucene.2016.12.006.
    HALLQUIST J O. LS-DYNA theory manual: Version 971 [M]. Livermore: Livermore Software Technology Corporation, 2007: 15−19.
    MIZUNO J, KOSHIKA N, MORIKAWA H, et al. Investigation on impact resistance of steel plate reinforced concrete barriers against aircraft impact, part 1: test program and results [C] // Proceedings of the 18th International Conference on Structural Mechanics in Reactor Technology. Beijing: China Nuclear Society, 2005: 2566−2579.
    中华人民共和国建设部, 中华人民共和国国家质量监督检验检疫总局. 人民防空地下室设计规范: GB 50038-2005 [S]. 北京: 国标图集出版社, 2006: 52−68.
    US Department of the Army. TM5-1300 The design of structures to resist the effects of accidental explosions [M]. Washington, DC: US Department of the Army, the Navy and the Air Force, 1990.
    Westinghouse Electric Company LLC. Passive safety systems and timeline for station blackout [DB/OL]. (2011)[2017-08-01]. https://www.westinghousenuclear.com/Portals/0/New%20Plants/AP1000/AP1000%20Station%20Blackout.pdf?timestamp=1404842353431.
    The Boeing Company. Boeing commercial airplanes [DB/OL]. (2020-05-18)[2017-09-02]. https://boeing.mediaroom.com.
    Boeing Commercial Airplanes. 767 Airplane characteristics for airport planning: D6-58328 [R]. Seattle: Boeing Commercial Airplanes, 2005.
  • 加载中
图(8) / 表(7)
计量
  • 文章访问数:  3310
  • HTML全文浏览量:  1448
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-14
  • 修回日期:  2020-05-25
  • 网络出版日期:  2020-09-25
  • 刊出日期:  2020-10-05

目录

    /

    返回文章
    返回