血液-血管耦合特性与脉搏波传播特性的关系

缪馥星 王晖 王礼立 何文明 陈霞波 龚文波 丁圆圆 浣石 徐冲 谢燕青 卢意成 沈利君

缪馥星, 王晖, 王礼立, 何文明, 陈霞波, 龚文波, 丁圆圆, 浣石, 徐冲, 谢燕青, 卢意成, 沈利君. 血液-血管耦合特性与脉搏波传播特性的关系[J]. 爆炸与冲击, 2020, 40(4): 041101. doi: 10.11883/bzycj-2020-0082
引用本文: 缪馥星, 王晖, 王礼立, 何文明, 陈霞波, 龚文波, 丁圆圆, 浣石, 徐冲, 谢燕青, 卢意成, 沈利君. 血液-血管耦合特性与脉搏波传播特性的关系[J]. 爆炸与冲击, 2020, 40(4): 041101. doi: 10.11883/bzycj-2020-0082
MIAO Fuxing, WANG Hui, WANG Lili, HE Wenming, CHEN Xiabo, GONG Wenbo, DING Yuanyuan, HUAN Shi, XU Chong, XIE Yanqing, LU Yicheng, SHEN Lijun. Relationship between the blood-vessel coupling characteristics and the propagation of pulse waves[J]. Explosion And Shock Waves, 2020, 40(4): 041101. doi: 10.11883/bzycj-2020-0082
Citation: MIAO Fuxing, WANG Hui, WANG Lili, HE Wenming, CHEN Xiabo, GONG Wenbo, DING Yuanyuan, HUAN Shi, XU Chong, XIE Yanqing, LU Yicheng, SHEN Lijun. Relationship between the blood-vessel coupling characteristics and the propagation of pulse waves[J]. Explosion And Shock Waves, 2020, 40(4): 041101. doi: 10.11883/bzycj-2020-0082

血液-血管耦合特性与脉搏波传播特性的关系

doi: 10.11883/bzycj-2020-0082
基金项目: 国家自然科学基金(11872218,11572161);宁波市首批医疗卫生品牌学科基金(PPXK2018-07);浙江省“近海结构冲击安全防护与健康监测”重点科技创新团队(2013TD21);浙江省自然科学基金(LY20H020002);浙江省医药卫生科研项目(2018KY712)
详细信息
    作者简介:

    缪馥星(1980- ),女,博士,副教授,miaofuxing@nbu.edu.cn

    通讯作者:

    王礼立(1934- ),男,教授,博士生导师,wanglili@nbu.edu.cn

  • 中图分类号: O347.4

Relationship between the blood-vessel coupling characteristics and the propagation of pulse waves

  • 摘要: 脉搏波既不可简单地理解为可压缩血液流体中的压力纵波,也不可简单地理解为沿固体血管传播的涨缩位移横波,而是超乎普通想象的流-固耦合和纵波-横波耦合的复杂波。从分析耦合本构关系的新途径出发,本文中提出了一个流-固耦合/纵波-横波耦合的串联模型,可为解读“位数形势”中医脉诊提供更丰富的信息。结果表明,脉搏波耦合系统的等效体积压缩模量Ks以及相应的耦合系统脉搏波传播速度cs主要依赖于两个无量纲参数:血液-血管模量比Kb(p)/E(p)和薄壁血管径厚比D(p)/h0,它们因人而异、因人的不同脉搏位置而异。文中定量分析了它们对cs的影响,显示人体的Kb/E值在103数量级,从而cs值在100~101 m/s数量级,以适应人体生理生化反应。由临床有创测量,证实脉搏体积横波与脉搏压力纵波是相耦合地以相同速度传播;还显示脉搏波是在其波阵面上具有氧合生化反应的“生物波”。此外,还讨论了“脉压放大”现象与非线性本构关系和与血管分叉处加载增强反射之间的关系,并讨论了Lewis关于重搏波形成的假设。
  • 图  1  串联模型

    Figure  1.  The series model proposed in this paper

    图  2  血液p-V关系时域图

    Figure  2.  p-V relation for blood

    图  3  薄壁圆管示意图

    Figure  3.  Thin-walled circular tube

    图  4  Hughes等[16]对狗实测的脉搏波(血液压力波(上),血管外径位移波(中),血管内径位移波(下))

    Figure  4.  Pulse waves measured by Hughes, et al[16] for a dog (blood pressure wave (top), vascular outer diameter displacement wave (middle), vascular inner diameter displacement wave (bottom))

    图  5  ${D / {{h_0} = 10}}$时,耦合系数$\alpha $${{{K_{\rm{b}}}} / E}$的变化

    Figure  5.  Relation between coupling coefficient $\alpha $and ${{{K_{\rm{b}}}} / E}$ for ${D/ {{h_0} = 10}}$

    图  6  ${{{K_{\rm{b}}}} / E} = {\rm{1}} \times {\rm{1}}{0^{\rm{3}}}$时,耦合系数$\alpha $${D / {{h_0}}}$的变化

    Figure  6.  Relation between coupling coefficient $\alpha $ and ${D / {{h_0}}}$ for ${{{K_{\rm{b}}}} / E} = {\rm{1}} \times {\rm{1}}{0^{\rm{3}}}$

    图  7  某患者冠状动脉介入手术中主动脉、肱动脉和桡动脉三处的监测动脉压力波视频截图

    Figure  7.  Video captures of measured pulse pressure waves in the aorta, brachial artery and radial artery of a patient undergoing coronary intervention

  • WANG L L, WANG H. Mechanics modeling and inverse analyses of pulse wave system from the view-point of traditional Chinese medicine [C]//Proceedings of the ASME 2016, 35th International Conference on Ocean, Offshore and Arctic Engineering. Busan, South Korea: ASME, 2016. DOI: 10.1115/OMAE2016-55106.
    王礼立, 王晖. 脉搏波系统的力学模型及反演兼对若干中医学问题的讨论 [J]. 力学学报, 2016, 48(6): 1416–1424. DOI: 10.6052/0459-1879-15-322.

    WANG L L, WANG H. Mechanics modeling and inverse analyses of pulse waves system with discussions on some concepts in the traditional Chinese medicine [J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1416–1424. DOI: 10.6052/0459-1879-15-322.
    王琦. 中医体质学 [M]. 北京: 人民卫生出版社, 2009.

    WANG Q. Constitutionology of Chinese medicine [M]. Beijing: People’s Medical Publishing House, 2009.
    王晖. 体质的中医保健 [M]. 宁波: 宁波出版社, 2009.

    WANG H. Traditional Chinese medicine health care of body constitutions [M]. Ningbo: Ningbo Press, 2009.
    王礼立. 应力波基础 [M]. 2版. 北京: 国防工业出版社, 2005.

    WANG L L. Foundation of stress waves [M]. 2nd ed. Beijing: National Defense Industry Press, 2005.
    HU C S, CHUNG Y F, YEH C C, et al. Temporal and spatial properties of arterial pulsation measurement using pressure sensor array [J]. Evidence-Based Complementary and Alternative Medicine, 2012, 2012: 745127. DOI: 10.1155/2012/745127.
    XUE Y, SU Y, ZHANG C, et al. Full-field wrist pulse signal acquisition and analysis by 3D Digital Image Correlation [J]. Optics and Lasers in Engineering, 2017, 98: 76–82. DOI: 10.1016/j.optlaseng.2017.05.018.
    MANCIA G, DE BACKER G, DOMINICZAK A, et al. 2007 Guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC) [J]. Journal of Hypertension, 2007, 25(6): 1105–1187. DOI: 10.1097/HJH.0b013e3281fc975a.
    中国高血压防治指南修订委员会, 高血压联盟(中国), 中华医学会心血管病学分会, 等. 中国高血压防治指南(2018年修订版) [J]. 中国心血管杂志, 2019, 24(1): 24–56. DOI: 10.3969/j.issn.1007-5410.2019.01.002.

    China Hypertension Prevention and Control Guidelines Revision Committee, Hypertension Alliance (China), Chinese Society of Cardiology, et al. 2018 Chinese guidelines for the management of hypertension [J]. Chinese Journal of Cardiovascular Medicine, 2019, 24(1): 24–56. DOI: 10.3969/j.issn.1007-5410.2019.01.002.
    MOENS A J. Die pulskurve [M]. Leiden: Brill, 1878.
    KORTEWEG D J. Ueber die Fortpflanzungsgeschwindigkeit des schalles in elastischen Röhren [J]. Annalen der Physik, 1878, 241(12): 525–542. DOI: 10.1002/andp.18782411206.
    HUGHES D J, BABBS C F, GEDDES L A, et al. Measurements of Young’s modulus of elasticity of the canine aorta with ultrasound [J]. Ultrasonic Imaging, 1979, 1(4): 356–367. DOI: 10.1177/016173467900100406.
    FUNG Y C. Biomechanics: circulation [M]. New York: Springer, 1997.
    MA Y J, CHOI J, HOURLIER-FARGETTE A, et al. Relation between blood pressure and pulse wave velocity for human arteries [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(44): 11144–11149. DOI: 10.1073/pnas.1814392115.
    TIMOSHENKO S P, GOODIER J N. Theory of elasticity [M]. 3rd ed. London: McGraw-Hill Book Company, 1970.
    HUGHES D J, FEARNOT N E, BABBS C F, et al. Continuous measurement of aortic radius change in vivo with an intra-aortic ultrasonic catheter [J]. Medical and Biological Engineering and Computing, 1985, 23(3): 197–202. DOI: 10.1007/BF02446857.
    URICK R J. A sound velocity method for determining the compressibility of finely divided substances [J]. Journal of Applied Physics, 1947, 18(11): 983–987. DOI: 10.1063/1.1697584.
    WANG S H, LEE L P, LEE J S. A linear relation between the compressibility and density of blood [J]. The Journal of the Acoustical Society of America, 2001, 109(1): 390–396. DOI: 10.1121/1.1333419.
    LAURENT S, GIRERD X, MOURAD J J, et al. Elastic modulus of the radial artery wall material is not increased in patients with essential hypertension [J]. Arteriosclerosis and Thrombosis: A Journal of Vascular Biology, 1994, 14(7): 1223–1231. DOI: 10.1161/01.ATV.14.7.1223.
    王礼立, 王晖, 杨黎明, 等. 论脉搏波客观化和定量化研究的症结所在 [J]. 中华中医药杂志, 2017, 32(11): 4855–4863.

    WANG L L, WANG H, YANG L M, et al. Crux of objectification and quantification of pulse waves [J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2017, 32(11): 4855–4863.
    WEBSTER J G. Design of pulse Oximeters [M]. Boca Raton: CRC Press, 1997.
    LEWIS T. The factors influencing the prominence of the dicrotic wave [J]. The Journal of Physiology, 1906, 34(6): 414–429. DOI: 10.1113/jphysiol.1906.sp001165.
  • 加载中
图(7)
计量
  • 文章访问数:  6762
  • HTML全文浏览量:  2723
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-24
  • 修回日期:  2020-03-29
  • 网络出版日期:  2020-04-02
  • 刊出日期:  2020-04-01

目录

    /

    返回文章
    返回