近距离爆炸比例爆距的界定标准及荷载模型

甘露 陈力 宗周红 钱海敏

甘露, 陈力, 宗周红, 钱海敏. 近距离爆炸比例爆距的界定标准及荷载模型[J]. 爆炸与冲击, 2021, 41(6): 064902. doi: 10.11883/bzycj-2020-0194
引用本文: 甘露, 陈力, 宗周红, 钱海敏. 近距离爆炸比例爆距的界定标准及荷载模型[J]. 爆炸与冲击, 2021, 41(6): 064902. doi: 10.11883/bzycj-2020-0194
GAN Lu, CHEN Li, ZONG Zhouhong, QIAN Haimin. Definition of scaled distance of close-in explosion and blast load calculation model[J]. Explosion And Shock Waves, 2021, 41(6): 064902. doi: 10.11883/bzycj-2020-0194
Citation: GAN Lu, CHEN Li, ZONG Zhouhong, QIAN Haimin. Definition of scaled distance of close-in explosion and blast load calculation model[J]. Explosion And Shock Waves, 2021, 41(6): 064902. doi: 10.11883/bzycj-2020-0194

近距离爆炸比例爆距的界定标准及荷载模型

doi: 10.11883/bzycj-2020-0194
基金项目: 国家自然科学基金面上项目(51678141,51978166)
详细信息
    作者简介:

    甘 露(1996- ),男,博士研究生,ganlu_1996@seu.edu.cn

    通讯作者:

    宗周红(1966- ),男,博士,教授,zongzh@seu.edu.cn

  • 中图分类号: O383.1

Definition of scaled distance of close-in explosion and blast load calculation model

  • 摘要: 如何准确界定“近距离爆炸(close-in explosion)”一直是防护工程研究领域的热点。本文中基于已被充分验证的精细化有限元模型,研究了TNT球形装药自由场爆炸冲击波传播与爆轰产物高速膨胀共同作用的特点和规律,发现在比例爆距小于0.80 m/kg1/3的范围内,爆轰产物对刚性壁面的爆炸荷载影响显著,提出球形装药近距离爆炸的比例爆距界定标准为0.30~0.80 m/kg1/3。研究发现,在近距离爆炸下,爆炸波在入射角为0°~5°范围内的刚性壁面反射荷载峰值会出现急剧下降的现象,这是由爆轰产物喷射的不均匀性和随机性导致的;近距离爆炸下,刚性壁面反射超压出现了两个峰值的现象,这是由冲击波和爆轰产物分别与刚性壁面相互作用导致的。提出了近距离爆炸情况下两个荷载峰值的计算公式,以及适合工程结构响应计算的简化荷载模型;揭示了近距离爆炸下刚性壁面反射超压的分布规律。
  • 图  1  2D轴对称模型

    Figure  1.  2D axisymmetric model

    图  2  有限元网格划分

    Figure  2.  Mesh of the finite element model

    图  3  不同网格尺寸情况下超压峰值与比例爆距的关系

    Figure  3.  Peak overpressure versus scaled distances with different mesh sizes

    图  4  自由场超压峰值与比例爆距的关系

    Figure  4.  Incident free-field overpressures versus scaled distances

    图  5  正反射超压峰值与比例爆距的关系

    Figure  5.  Reflected overpressures versus scaled distances

    图  6  爆轰产物膨胀过程

    Figure  6.  Expansion of detonation products

    图  7  5种比例爆距工况的刚体反射超压曲线

    Figure  7.  Reflected overpressure curves at five types of scale distances

    图  8  0.50 m/kg1/3比例爆距工况下冲击波反射与爆轰产物撞击作用现象

    Figure  8.  Reflection of blast wave and detonation product at 0.50 m/kg1/3

    图  9  冲击波与爆轰产物到达时间及荷载峰值

    Figure  9.  Scaled arrival times and peak pressures of shock wave and detonation products

    图  10  板面荷载计算范围

    Figure  10.  Calculated scope of load distribution

    图  11  不同比例爆距工况下刚性壁面荷载峰值分布

    Figure  11.  Load distributions at different types of scale distances

    图  12  冲击波正反射超压峰值拟合曲线(0.30 m/kg1/3Z≤0.80 m/kg1/3

    Figure  12.  Fitting curve of peak normal reflected overpressures of shock waves (0.3 m/kg1/3Z≤0.8 m/kg1/3)

    图  13  冲击波到达比时间拟合曲线(0.30 m/kg1/3Z≤0.80 m/kg1/3

    Figure  13.  Fitting curve of scaled arrival times of shock waves (0.30 m/kg1/3Z≤0.80 m/kg1/3)

    图  14  爆轰产物荷载峰值拟合曲线(0.30 m/kg1/3Z≤0.80 m/kg1/3

    Figure  14.  Fitting curve of peak overpressures of detonation products (0.30 m/kg1/3Z≤0.80 m/kg1/3)

    图  15  爆轰产物到达比时间拟合曲线(0.30 m/kg1/3Z≤0.80 m/kg1/3

    Figure  15.  Fitting curve of scaled arrival times of detonation products (0.30 m/kg1/3Z≤0.80 m/kg1/3)

    图  16  比冲量结果曲线(0.30 m/kg1/3Z≤0.80 m/kg1/3

    Figure  16.  Scaled impulses fitting curves for 0.30 m/kg1/3Z≤0.80 m/kg1/3

    图  17  荷载简化计算模型

    Figure  17.  A simplified calculation model for load

    图  18  刚性壁面荷载分布区间

    Figure  18.  Distribution of blast loads on rigid walls

    表  1  炸药模型参数[17]

    Table  1.   Parameters for modeling TNT explosive[17]

    密度/(kg·m−3爆速/(m·s−1pCJ/GPaA/GPaB/GPawR1R2E/(MJ·m−3
    1630693021371.23.2310.34.150.957000
    下载: 导出CSV

    表  2  空气模型参数

    Table  2.   Parameters for modeling air

    密度/(kg·m−3C0C1C2C3C4C5C6E/(MJ·m−3
    1.292900000.40.400.25
    下载: 导出CSV
  • [1] BRODE H L. Blast wave from a spherical charge [J]. The Physics of Fluids, 1959, 2(2): 217–229. DOI: 10.1063/1.1705911.
    [2] HENRYCH J. The dynamics of explosion and its use [M]. New York: Elsevier, 1979.
    [3] BAKER W E. Explosions in air [M]. Austin: University of Texas Press, 1973.
    [4] KINGERY C N, BULMASH G. Air blast parameters from TNT spherical air burst and hemispherical surface burst [R]. Aberdeen, Maryland, USA: US Army Ballistic Research Laboratory, 1984.
    [5] US Department of Defense. UFC 3-340-02 Structures to resist the effects of accidental explosions [S]. Washington: The US Department of Army, 2008.
    [6] SHIN J, WHITTAKER A, AREF A, et al. Air-blast effects on civil structures: MCEER-14-0006 [R]. Buffalo: Multidisciplinary Center for Earthquake Engineering Research, 2014. DOI: 10.13140/RG.2.1.3454.1686.
    [7] SHIN J, WHITTAKER A S, CORMIE D. Incident and normally reflected overpressure and impulse for detonations of spherical high explosives in free air [J]. Journal of Structural Engineering, 2015, 141(12): 04015057. DOI: 10.1061/(ASCE)ST.1943-541X.0001305.
    [8] SHIN J, WHITTAKER A S, CORMIE D, et al. Numerical modeling of close-in detonations of high explosives [J]. Engineering Structures, 2014, 81: 88–97. DOI: 10.1016/j.engstruct.2014.09.022.
    [9] KARLOS V, SOLOMOS G, LARCHER M. Analysis of blast parameters in the near-field for spherical free-air explosions: JRC101039 [R]. Italy: Joint Research Center, 2016. DOI: 10.2788/778898.
    [10] American Society of Civil Engineers. Blast protection of buildings [M]. New York: ASCE/ Structural Engineering Institute, 2011. DOI: 10.1061/9780784411889.
    [11] 宁建国, 王成, 马天宝. 爆炸与冲击动力学[M]. 北京: 国防工业出版社, 2010: 110.
    [12] 胡攀. 近距离爆炸下作用在建筑结构上的爆炸荷载模型研究[D]. 天津: 天津大学, 2016: 10.
    [13] ORTON S L, CHIARITO V P, MINOR J K, et al. Experimental testing of CFRP-strengthened reinforced concrete slab elements loaded by close-in blast [J]. Journal of Structural Engineering, 2014, 140(2): 04013060. DOI: 10.1061/(ASCE)ST.1943-541X.0000821.
    [14] 李臻, 刘彦, 黄风雷, 等. 接触爆炸和近距离爆炸比冲量数值仿真研究 [J]. 北京理工大学学报, 2020, 40(2): 143–149. DOI: 10.15918/j.tbit1001-0645.2019.049.

    LI Z, LIU Y, HUANG F L, et al. Investigation of specific impulse under contact explosion and close-in explosion conditions using numerical method [J]. Transactions of Beijing Institute of Technology, 2020, 40(2): 143–149. DOI: 10.15918/j.tbit1001-0645.2019.049.
    [15] 汪维, 刘光昆, 赵强, 等. 近爆作用下方形板表面爆炸载荷分布函数研究 [J]. 中国科学: 物理学 力学 天文学, 2020, 50(2): 024615. DOI: 10.1360/SSPMA-2019-0188.

    WANG W, LIU G K, ZHAO Q, et al. Study on load distributing function of square slab surface under close-in blast loading [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2020, 50(2): 024615. DOI: 10.1360/SSPMA-2019-0188.
    [16] SMILOWITZ R, BLEWETT W, WILLIAMS P, et al. Design guidance for shelters and safe rooms (Providing protection to people and buildings against terrorist attacks) [R]. Washington: Federal Emergency Management Agency, 2006.
    [17] DOBRATZ B M, CRAWFORD P C. LLNL explosives handbook: properties of chemical explosives and explosive simulants: UCRL-52997 [R]. Livermore, California: Lawrence Livermore National Lab, 1981.
    [18] 赵铮, 陶钢, 杜长星. 爆轰产物JWL状态方程应用研究 [J]. 高压物理学报, 2009, 23(4): 277–282. DOI: 10.3969/j.issn.1000-5773.2009.04.007.

    ZHAO Z, TAO G, DU C X. Application research on JWL equation of state of detonation products [J]. Chinese Journal of High Pressure Physics, 2009, 23(4): 277–282. DOI: 10.3969/j.issn.1000-5773.2009.04.007.
    [19] JIANG Z L. Shock waves [M]. Berlin: Springer, 2005: 855−860.
    [20] DROTLEFF J E, VINCENT C T, MULLIN S A, et al. Research in close-in blast loading from high explosives: ARL-CR-308 [R]. Virginia: U.S. Army Research Laboratory, 1996.
    [21] 周丰峻, 陈叶青, 任辉启. 爆炸近区空气冲击波规则反射和非规则反射[C] // 祝贺郑哲敏先生八十华诞应用力学报告会——应用力学进展论文集. 北京: 中国力学学会, 2004: 98−112.
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  1010
  • HTML全文浏览量:  496
  • PDF下载量:  202
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-12
  • 修回日期:  2020-10-13
  • 网络出版日期:  2021-06-01
  • 刊出日期:  2021-06-05

目录

    /

    返回文章
    返回