• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

后墙拆分结构防护性能的实验和计算对比研究

文雪忠 黄洁 赵君尧 柯发伟 马兆侠 柳森

文雪忠, 黄洁, 赵君尧, 柯发伟, 马兆侠, 柳森. 后墙拆分结构防护性能的实验和计算对比研究[J]. 爆炸与冲击, 2021, 41(2): 021409. doi: 10.11883/bzycj-2020-0323
引用本文: 文雪忠, 黄洁, 赵君尧, 柯发伟, 马兆侠, 柳森. 后墙拆分结构防护性能的实验和计算对比研究[J]. 爆炸与冲击, 2021, 41(2): 021409. doi: 10.11883/bzycj-2020-0323
WEN Xuezhong, HUANG Jie, ZHAO Junyao, KE Fawei, MA Zhaoxia, LIU Sen. Comparative study of simulation and experiment on shielding performance of shield with separated rear wall[J]. Explosion And Shock Waves, 2021, 41(2): 021409. doi: 10.11883/bzycj-2020-0323
Citation: WEN Xuezhong, HUANG Jie, ZHAO Junyao, KE Fawei, MA Zhaoxia, LIU Sen. Comparative study of simulation and experiment on shielding performance of shield with separated rear wall[J]. Explosion And Shock Waves, 2021, 41(2): 021409. doi: 10.11883/bzycj-2020-0323

后墙拆分结构防护性能的实验和计算对比研究

doi: 10.11883/bzycj-2020-0323
详细信息
    作者简介:

    文雪忠(1982- ),男,硕士,副研究员,wenxz@xjtu.edu.cn

  • 中图分类号: O382

Comparative study of simulation and experiment on shielding performance of shield with separated rear wall

  • 摘要: 为验证利用后墙拆分方式提升防护结构性能的可行性,通过开展数值模拟(铝弹丸直径6.0 mm,撞击速度5.0~8.3 km/s)和超高速撞击实验(铝弹丸直径6.0 mm,撞击速度约8.3 km/s),研究了3种防护结构的性能差异以及不同撞击速度对结构防护性能的影响。防护结构主要包括Whipple结构和两种后墙拆分结构。针对直径6.0 mm铝弹丸分别以5.0、6.0、7.0、8.3 km/s的速度撞击防护结构的工况,借助Autodyn软件开展了数值模拟,并将模拟结果与在弹道靶设备上获得的超高速撞击实验结果进行了对比。模拟结果与实验结果均表明,在相同撞击状态下两种后墙拆分结构的防护性能有所差异,但均优于相同面密度的Whipple结构,且随着撞击速度的提高,这种优势具有增大的趋势。
  • 图  1  3种防护结构示意图

    Figure  1.  Sketches for three kinds of shield structures

    图  2  Whipple结构后墙在直径6.0 mm的弹丸以不同速度撞击后40 µs的损伤

    Figure  2.  Damage in the rear wall of the Whipple shield at 40 µs after it was impacted by a 6.0-mm-diameter aluminum projectile at different impact velocities

    图  3  SRW1结构后墙在直径6.0 mm的弹丸以不同速度撞击后40 µs的损伤

    Figure  3.  Damage in the rear wall of the SRW1 shield at 40 µs after it was impacted by a 6.0-mm-diameter aluminum projectile at different impact velocities

    图  4  超高速弹道靶

    Figure  4.  Hypervelocity ballistic range

    图  5  3种防护结构实物照片

    Figure  5.  Photos for three kinds of shield structures

    图  6  Whipple结构在直径6.0 mm的铝球以8.31 km/s的速度撞击下的损伤情况[14]

    Figure  6.  The damage of the Whipple shield impacted by the 6.0-mm-diameter aluminum projectile with the initial impact velocity of 8.31 km/s[14]

    图  7  SRW1结构在直径6.0 mm的铝球以8.25 km/s的速度撞击下的损伤情况[14]

    Figure  7.  The damage of the SRW1 shield impacted by the 6.0-mm-diameter aluminum projectile with the initial impact velocity of 8.25 km/s[14]

    图  8  SRW2结构在直径6.0 mm的铝球以8.41 km/s的速度撞击下的损伤情况[14]

    Figure  8.  The damage of the SRW2 shield impacted by the 6.0-mm-diameter aluminum projectile with the initial impact velocity of 8.41 km/s[14]

    图  9  两种结构后墙损伤情况的实验与模拟结果对比

    Figure  9.  Comparison of the damage of the rear Walls in two kinds of shield between experiment and simulation

    表  1  3种防护结构尺寸参数

    Table  1.   The sizes of three kinds of shields

    防护结构缓冲屏与后墙间距/mm缓冲屏厚度/mm后墙结构
    Whipple1002厚度3 mm铝板
    SRW11002第1层为厚度1 mm的铝板,第2层为厚度2 mm的铝板
    SRW21002第1层为厚度2 mm的铝板,第2层为厚度1 mm的铝板
    下载: 导出CSV

    表  2  实验中3种防护结构损伤情况

    Table  2.   The damage of three kinds of shields in tests

    防护结构弹丸直径/mm撞击速度/(km·s−1)缓冲屏损伤后墙损伤观察屏损伤
    Whipple6.08.31穿孔约$\varnothing $35 mm剥落撞击痕迹、鼓包
    SRW16.08.25穿孔第1层:鼓包、无剥落无痕迹
    第2层:鼓包、无剥落
    SRW26.08.41穿孔第1层:鼓包、无剥落无痕迹
    第2层:约$\varnothing $9 mm剥落
    下载: 导出CSV
  • [1] 韩增尧, 庞宝君. 空间碎片防护研究最新进展 [J]. 航天器环境工程, 2012, 29(4): 369–378. DOI: 10.3969/j.issn.1673-1379.2012.04.004.

    HAN Z Y, PANG B J. Review of recent development of space debris protection research [J]. Spacecraft Environment Engineering, 2012, 29(4): 369–378. DOI: 10.3969/j.issn.1673-1379.2012.04.004.
    [2] NASA Johnson Space Center. Handbook for designing MMOD protection: NASA/TM-2009-214785 [R]. 2009.
    [3] 侯明强, 龚自正, 徐坤博, 等. 密度梯度薄板超高速撞击特性的实验研究 [J]. 物理学报, 2014, 63(2): 024701. DOI: 10.7498/aps.63.024701.

    HOU M Q, GONG Z Z, XU K B, et al. Experimental study on hypervelocity impact characteristics of density-grade thin-plate [J]. Acta Physica Sinica, 2014, 63(2): 024701. DOI: 10.7498/aps.63.024701.
    [4] SCHONBERG W P, TULLOS R J. Spacecraft wall design for increased protection against penetration by orbital debris impacts [J]. AIAA Journal, 1991, 29(12): 2207–2214. DOI: 10.2514/3.10861.
    [5] HUANG X G, YIN C, HUANG J, et al. Hypervelocity impact of TiB2-based composites as front bumpers for space shield applications [J]. Materials and Design, 2016, 97: 473–482. DOI: 10.1016/j.matdes.2016.02.126.
    [6] 武强, 张庆明, 龙仁荣, 等. 含能材料防护屏在球形弹丸超高速撞击下的穿孔特性研究 [J]. 兵工学报, 2017, 38(11): 2126–2133. DOI: 10.3969/j.issn.1000-1093.2017.11.007.

    WU Q, ZHANG Q M, LONG R R, et al. Perforation characteristics of energetic material shield induced by hypervelocity impact of spherical projectile [J]. Acta Armamentarii, 2017, 38(11): 2126–2133. DOI: 10.3969/j.issn.1000-1093.2017.11.007.
    [7] FAHRENTHOLD E P, PARK Y K. Simulation of hypervelocity impact on aluminum-Nextel-Kevlar orbital debris shields [J]. International Journal of Impact Engineering, 2003, 29(1−10): 227–235. DOI: 10.1016/j.ijimpeng.2003.09.018.
    [8] RYAN S, HEDMAN T, CHRISTIANSEN E L. Honeycomb vs. foam: evaluating potential upgrades to ISS module shielding [J]. Acta Astronautica, 2010, 67(7/8): 818–825. DOI: 10.1016/j.actaastro.2010.05.021.
    [9] CHRISTIANSEN E L, KERR J H. Mesh double-bumper shield: a low-weight alternative for spacecraft meteoroid and orbital debris protection [J]. International Journal of Impact Engineering, 1993, 14(1−3): 169–180. DOI: 10.1016/0734-743X(93)90018-3.
    [10] 哈跃, 刘志勇, 管公顺, 等. 玄武岩纤维布超高速撞击损伤分析 [J]. 高压物理学报, 2012, 26(5): 557–563. DOI: 10.11858/gywlxb.2012.05.012.

    HA Y, LIU Z Y, GUAN G S, et al. Damage investigation of hypervelocity impact on woven fabric of basalt fiber [J]. Chinese Journal of High Pressure Physics, 2012, 26(5): 557–563. DOI: 10.11858/gywlxb.2012.05.012.
    [11] 赵君尧, 柳森, 文雪忠, 等. 玻璃钢空间碎片防护构型性能的实验研究与仿真分析 [J]. 航天器环境工程, 2019, 36(2): 120–125. DOI: 10.12126/see.2019.02.003.

    ZHAO J Y, LIU S, WEN X Z, et al. Experimental and analytical studies of the performance of FRP protective configuration against space debris [J]. Spacecraft Environment Engineering, 2019, 36(2): 120–125. DOI: 10.12126/see.2019.02.003.
    [12] 管公顺, 丰硕, 庞宝君, 等. 三层铝板结构高速撞击损伤与极限特性 [J]. 宇航学报, 2016, 37(3): 364–370. DOI: 10.3873/j.issn.1000-1328.2016.03.016.

    GUAN G S, FENG S, PANG B J, et al. Damage and ballistic limit for three-layer aluminum plate structure under high-velocity impact [J]. Journal of Astronautics, 2016, 37(3): 364–370. DOI: 10.3873/j.issn.1000-1328.2016.03.016.
    [13] WEN X Z, HUANG J, KE F W, et al. Debris dispersion effect in N-shape configuration [J]. Acta Astronautica, 2014, 104(1): 173–178. DOI: 10.1016/j.actaastro.2014.06.037.
    [14] WEN X Z, HUANG J, KE F W, et al. Preliminary study on shielding performance of debris shield with the rear wall combining light materials and an aluminum plate [J]. International Journal of Impact Engineering, 2019, 124: 31–36. DOI: 10.1016/j.ijimpeng.2018.10.006.
    [15] WEN X Z, HUANG J, MA Z X, et al. Shielding performance of debris shield with separated rear wall [J]. International Journal of Impact Engineering, 2020, 137: 103446. DOI: 10.1016/j.ijimpeng.2019.103446.
    [16] 柳森, 黄洁, 李毅, 等. 中国空气动力研究与发展中心的空间碎片超高速撞击试验研究进展 [J]. 载人航天, 2011, 17(6): 17–23. DOI: 10.3969/j.issn.1674-5825.2011.06.004.

    LIU S, HUANG J, LI Y, et al. Recent advancement of hypervelocity impact tests at HAI, CARDC [J]. Manned Spaceflight, 2011, 17(6): 17–23. DOI: 10.3969/j.issn.1674-5825.2011.06.004.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  468
  • HTML全文浏览量:  202
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-11
  • 修回日期:  2020-12-20
  • 网络出版日期:  2021-02-02
  • 刊出日期:  2021-02-05

目录

    /

    返回文章
    返回