水下爆炸下典型舰船结构整体损伤模式表征方法及图谱研究

张弛 刘凯 李海涛 梅志远 郑欣颖

张弛, 刘凯, 李海涛, 梅志远, 郑欣颖. 水下爆炸下典型舰船结构整体损伤模式表征方法及图谱研究[J]. 爆炸与冲击, 2022, 42(6): 065101. doi: 10.11883/bzycj-2021-0200
引用本文: 张弛, 刘凯, 李海涛, 梅志远, 郑欣颖. 水下爆炸下典型舰船结构整体损伤模式表征方法及图谱研究[J]. 爆炸与冲击, 2022, 42(6): 065101. doi: 10.11883/bzycj-2021-0200
ZHANG Chi, LIU Kai, LI Haitao, MEI Zhiyuan, ZHENG Xinying. Study on the characterization method and mode map of overall damage of typical warship structures subjected to underwater explosions[J]. Explosion And Shock Waves, 2022, 42(6): 065101. doi: 10.11883/bzycj-2021-0200
Citation: ZHANG Chi, LIU Kai, LI Haitao, MEI Zhiyuan, ZHENG Xinying. Study on the characterization method and mode map of overall damage of typical warship structures subjected to underwater explosions[J]. Explosion And Shock Waves, 2022, 42(6): 065101. doi: 10.11883/bzycj-2021-0200

水下爆炸下典型舰船结构整体损伤模式表征方法及图谱研究

doi: 10.11883/bzycj-2021-0200
基金项目: 国家自然科学基金(51679244)
详细信息
    作者简介:

    张 弛(1997- ),男,硕士研究生,zc_nue@163.com

    通讯作者:

    李海涛(1979- ),男,博士,副教授,navy_lht@163.com

  • 中图分类号: O383.3;U661.4

Study on the characterization method and mode map of overall damage of typical warship structures subjected to underwater explosions

  • 摘要: 随着舰船抗爆炸冲击总体结构优化设计及水中兵器攻击效能评估研究的深入,建立水下中近距非接触爆炸作用下舰船整体损伤模式的快速判定方法尤为重要。通过Abaqus软件建立了爆炸冲击波和气泡联合作用下舰船结构整体损伤特性的数值模拟方法并进行了实验验证;分析了水下爆炸载荷强度及舰船结构强度等参数变化对结构整体损伤模式的影响,提出了综合反映爆炸冲击波和气泡联合作用的新型冲击强度因子C4,表征舰船结构总体强度的结构强度因子S,初步构建了舰船整体损伤模式分布图谱C4-S。研究结果表明,建立的数值方法能较好预测舰船结构整体损伤模式和总体变形,误差不超过10%;提出的两类因子能分别合理表征水下爆炸强度和舰船结构强度,构建的损伤模式分布图谱能较好区分不同爆炸强度、舰船结构强度下的舰船整体中拱、中垂、鞭状损伤模式,可实现对水下爆炸下舰船整体损伤模式的快速判定。
  • 图  1  数值计算模型及网格

    Figure  1.  Numerical calculation models and meshes

    图  2  船体梁模型及水下爆炸实验布置示意图

    Figure  2.  Schematic of girder model and underwater explosion experimental layout

    图  3  船体梁中部垂向运动过程实验与数值模拟对比图(正值为中拱变形,负值为中垂变形)

    Figure  3.  Comparison between experiment and simulation process of vertical movement at middle of girder (positive value represents hogging deformation; negative value represents sagging deformation)

    图  4  船体梁中点位移时程曲线数值结果和实验结果对比

    Figure  4.  Comparison between numerical and experimental displacement-time curves at the girder’s mid-point

    图  5  沿长度方向船体梁垂向变形数值结果和实验结果对比

    Figure  5.  Comparison between numerical and experimental girder’s vertical deformations along longitudinal direction

    图  6  船体梁底部最终变形数值模拟和实验结果对比

    Figure  6.  Comparison between numerical and experimental final deformation of the girder’s bottom

    图  7  水下爆炸计算工况纵、横向点位布置示意图

    Figure  7.  Schematic of longitudinal and transverse layout of underwater explosion calculation case

    图  8  典型舰船中拱/中垂损伤模式示意图

    Figure  8.  Schematic of hogging and sagging damage mode of typical warship

    图  9  爆径比-结构强度因子整体损伤模式分布图谱

    Figure  9.  The ratio of standoff and maximum bubble radius-structural strength factor overall damage mode distribution atlas

    图  10  球面波修正的冲击因子-结构强度因子整体损伤模式分布图谱

    Figure  10.  The shock factor of spherical wave correction-structural strength factor overall damage mode distribution atlas

    图  11  新型冲击强度因子-结构强度因子整体损伤模式分布图谱

    Figure  11.  The new shock factor-structural strength factor overall damage mode distribution atlas

    表  1  Johnson-Cook本构模型及失效模型参数[18]

    Table  1.   Johnson-Cook constitutive model and failure model parameters [18]

    A/GPaB/GPaCnmD1D2D3D4D5
    0.250.890.0580.750.940.381.472.58−0.00158.07
    下载: 导出CSV
  • [1] 刘文思, 吴林杰, 侯代文, 等. 鱼雷近场爆炸对舰船不同结构的局部毁伤研究 [J]. 兵器装备工程学报, 2019, 40(10): 12–15. DOI: 10.11809/bqzbgcxb2019.10.003.

    LIU W S, WU L J, HOU D W, et al. Study on local damage of different structures of ships by torpedo near field explosion [J]. Journal of Ordnance Equipment Engineering, 2019, 40(10): 12–15. DOI: 10.11809/bqzbgcxb2019.10.003.
    [2] 李玉节, 潘建强, 李国华, 等. 水下爆炸气泡诱发舰船鞭状效应的实验研究 [J]. 船舶力学, 2001, 5(6): 75–83. DOI: 10.3969/j.issn.1007-7294.2001.06.009.

    LI Y J, PAN J Q, LI G H, et al. Experimental study of ship whipping induced by underwater explosive bubble [J]. Journal of Ship Mechanics, 2001, 5(6): 75–83. DOI: 10.3969/j.issn.1007-7294.2001.06.009.
    [3] 曾令玉, 杨博, 苏罗青, 等. 水下爆炸载荷作用下舰船总体毁伤模式研究 [J]. 船海工程, 2011, 40(2): 45–48. DOI: 10.3963/j.issn.1671-7953.2011.02.012.

    ZENG L Y, YANG B, SU L Q, et al. Study on failure mode of overall ship subjected to underwater explosion [J]. Ship and Ocean Engineering, 2011, 40(2): 45–48. DOI: 10.3963/j.issn.1671-7953.2011.02.012.
    [4] 李海涛, 朱锡, 黄晓明, 等. 近场脉动气泡作用下船体梁模型动响应试验研究 [J]. 哈尔滨工程大学学报, 2008(8): 773–778. DOI: 10.3969/j.issn.1006-7043.2008.08.001.

    LI H T, ZHU X, HUANG X M, et al. Experimental study on dynamic response of a ship-like model subjected to near field underwater explosion bubbles [J]. Journal of Harbin Engineering University, 2008(8): 773–778. DOI: 10.3969/j.issn.1006-7043.2008.08.001.
    [5] LEE M, PARK Y S, PARK Y J, et al. New approximations of external acoustic-structural interactions: derivation and evaluation [J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(15): 1368–1388. DOI: 10.1016/j.cma.2008.12.003.
    [6] 王诗平, 孙士丽, 张阿漫, 等. 冲击波和气泡作用下舰船结构动态响应的数值模拟 [J]. 爆炸与冲击, 2011, 31(4): 367–372. DOI: 10.11883/1001-1455(2011)04-0367-06.

    WANG S P, SUN S L, ZHANG A M, et al. Numerical simulation of dynamic response of warship structures subjected to underwater explosion shock waves and bubbles [J]. Explosion and Shock Waves, 2011, 31(4): 367–372. DOI: 10.11883/1001-1455(2011)04-0367-06.
    [7] LIU Y L, ZHANG A M, TIAN Z L, et al. Investigation of free-field underwater explosion with eulerian finite element method [J]. Ocean Engineering, 2018, 166(1): 182–190. DOI: 10.1016/j.oceaneng.2018.08.001.
    [8] LIU J H, WU Y S, WANG H K, et al. Application of the loading inherent subspace scaling method on the whipping responses test of a surface ship to underwater explosions [J]. Journal of Ship Mechanics, 2013, 17(3): 257–268. DOI: 10.3969/j.issn.1007-7294.2013.03.006.
    [9] ZHANG A M, YAO X L, LI J. The interaction of an underwater explosion bubble and an elastic-plastic structure [J]. Applied Ocean Research, 2008, 30(3): 159–171.DOI. DOI: 10.1016/j.apor.2008.11.003.
    [10] 张阿漫, 姚熊亮. 水下爆炸气泡与复杂弹塑性结构的相互作用研究 [J]. 应用数学和力学, 2008(1): 81–92. DOI: 10.3879/j.issn.1000-0887.2008.01.011.

    ZHANG A M, YAO X L. Interaction of underwater explosion bubble with complex elastic-plastic structure [J]. Applied Mathematics and Mechanics, 2008(1): 81–92. DOI: 10.3879/j.issn.1000-0887.2008.01.011.
    [11] ZONG Z, ZHAO Y, LI H. A numerical study of whole ship structural damage resulting from close-in underwater explosion shock [J]. Marine Structures, 2013, 31: 24–43.DOI. DOI: 10.1016/j.marstruc.2013.01.004.
    [12] WANG H, ZHU X, CHENG Y S, et al. Experimental and numerical investigation of ship structure subjected to close-in underwater shock wave and following gas bubble pulse [J]. Marine Structures, 2014, 39: 90–117. DOI: 10.1016/j.marstruc.2014.07.003.
    [13] 王海坤. 水下爆炸下水面舰船结构局部与总体耦合损伤研究[D]. 无锡: 中国船舶科学研究中心, 2018: 104–173.
    [14] 姜忠涛, 李烨, 庞学佳, 等. 近场水下爆炸气泡射流载荷冲击船体外板的动响应分析 [J]. 振动与冲击, 2018, 37(9): 214–220. DOI: 10.13465/j.cnki.jvs.2018.09.034.

    JIANG Z T, LI Y, PANG X J, et al. Dynamic response of hull plates subjected to near field underwater explosion bubble jet load [J]. Journal of Vibration and Shock, 2018, 37(9): 214–220. DOI: 10.13465/j.cnki.jvs.2018.09.034.
    [15] 崔雄伟, 陈莹玉, 苏标, 等. 水下爆炸中气泡射流壁压特性实验研究 [J]. 爆炸与冲击, 2020, 40(11): 111404. DOI: 10.11883/bzycj-2020-0106.

    CUI X W, CHEN Y Y, SU B, et al. Characteristics of wall pressure generated by bubble jets in an underwater explosion [J]. Explosion and Shock Waves, 2020, 40(11): 111404. DOI: 10.11883/bzycj-2020-0106.
    [16] 贺铭, 张阿漫, 刘云龙. 近场水下爆炸气泡与双层破口结构的相互作用 [J]. 爆炸与冲击, 2020, 40(11): 111402. DOI: 10.11883/bzycj-2020-0110.

    HE M, ZHANG A M, LIU Y L. Interaction of the underwater explosion bubble and nearby double-layer structures with circular holes [J]. Explosion and Shock Waves, 2020, 40(11): 111402. DOI: 10.11883/bzycj-2020-0110.
    [17] LI H T, ZHANG C, ZHENG X Y, et al. A simplified theoretical model of the whipping response of a hull girder subjected to underwater explosion consider the damping effect [J]. Ocean Engineering, 2021, 239: 109831. DOI: 10.1016/j.oceaneng.2021.109831.
    [18] 孔祥韶. 爆炸载荷及复合多层防护结构响应特性研究[D]. 武汉: 武汉理工大学, 2013: 73–78.
    [19] 李营, 汪玉, 吴卫国, 等. 船用907A钢的动态力学性能和本构关系 [J]. 哈尔滨工程大学学报, 2015, 36(1): 127–129. DOI: 10.3969/j.issn.1006-7043.2013.11.077.

    LI Y, WANG Y, WU W G, et al. Dynamic mechanical behavior and constitutive relation of the ship-built steel 907A [J]. Journal of Harbin Engineering University, 2015, 36(1): 127–129. DOI: 10.3969/j.issn.1006-7043.2013.11.077.
    [20] 朱锡, 牟金磊, 洪江波, 等. 水下爆炸气泡脉动特性的试验研究 [J]. 哈尔滨工程大学学报, 2007, 28(4): 365–368. DOI: 10.3969/j.issn.1006-7043.2007.04.001.

    ZHU X, MU J L, HONG J B, et al. Experimental study of characters of bubble impulsion induced by underwater explosions [J]. Journal of Harbin Engineering University, 2007, 28(4): 365–368. DOI: 10.3969/j.issn.1006-7043.2007.04.001.
    [21] 姚熊亮, 郭君, 曹宇, 等. 在水下爆炸冲击波作用下的新型冲击因子 [J]. 中国造船, 2008(2): 52–60. DOI: 10.3969/j.issn.1000-4882.2008.02.007.

    YAO X L, GUO J, CAO Y, et al. A new impulsive factors on the underwater shock load [J]. Shipbuilding of China, 2008(2): 52–60. DOI: 10.3969/j.issn.1000-4882.2008.02.007.
    [22] 李海涛, 朱石坚, 刁爱民, 等. 水下爆炸作用下对称结构船体梁整体损伤特性研究 [J]. 船舶力学, 2017, 21(8): 983–992. DOI: 10.3969/j.issn.1007-7294.2017.08.007.

    LI H T, ZHU S J, DIAO A M, et al. Experimental investigation on the damage modes of axisymmetrical ship-like beam subjected to underwater explosions in near-field [J]. Journal of Ship Mechanics, 2017, 21(8): 983–992. DOI: 10.3969/j.issn.1007-7294.2017.08.007.
    [23] LI H T, ZHENG X Y, ZHANG C, et al. Sagging damage characteristics of hull girder with trapezoidal cross-section subjected to near-field underwater explosion [J]. Defence Technology, 2021. DOI: 10.1016/j.dt.2021.10.004.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  428
  • HTML全文浏览量:  214
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-19
  • 修回日期:  2021-12-16
  • 网络出版日期:  2022-05-13
  • 刊出日期:  2022-06-24

目录

    /

    返回文章
    返回