Development of a miniature explosion device initiated by a synchronous launcher of marbles driven by two-stage high-pressure gas
-
摘要: 针对当前大当量地下爆炸真空室模拟试验中爆源起爆方式高度依赖火药制品等问题,基于地下爆炸相似理论和二级气炮原理,自主研制了二级高压驱动阵列弹珠同步弹射微型爆源装置。装置利用二级高压气体驱动弹珠同步击碎玻璃球壳,释放球内高压气体,以模拟真实爆炸气体生成物的推出。整套爆源装置的发射参数:高压气室充气压力4 MPa,玻璃球壳内残余稳态气体压力约为3 kPa,能够用于0~20 kt当量地下爆炸成坑效应的真空室模拟。爆源适用性试验验证表明,该爆源装置的爆破机制和爆破效果满足大当量地下抛掷爆炸真空室模拟试验的功能需求,且具有较高的安全性、可控性和可操作性,为开展相关模拟试验提供了新的技术方法。Abstract: Aiming at the problem that the initiation mode of the explosion device is highly dependent on the gunpowder products in the simulation experiments of large-scale underground explosions in a vacuum chamber, and based on the similarity theory of underground explosions and the principle of the two-stage gas gun, a micro explosion device initiated by a synchronous launcher of marbles driven by two-stage high-pressure gas was developed independently. A glass enclosure with compressed gas (filled by air compressor) was used to simulate the high-pressure cavity generated at the beginning of a real underground explosion. Two-stage high-pressure gas was used to drive marbles to break the glass shell synchronously, thus releasing the high-pressure gas in the spherical shell to simulate the ejection of gas products in a real underground explosion. The pressure in the launcher chamber is 4 MPa, and the residual steady-state gas pressure in the glass enclosure is about 3 kPa. The above set of the launch parameters can be used for simulation experiments of real underground explosions with an equivalent of 0−20 kt TNT. Through high-speed imaging of the air and water blasting sphericity tests, the reliability of the explosion device and the sphericity of the blasting effect were verified. When there is a difference in the internal and external pressure of the glass spherical shell, the cracks of the shell are fully developed and the fragments are evenly distributed. The applicability test shows that the blasting mechanism and blasting effect of the explosion device can meet the requirements of the simulation experiment of large-scale underground explosions in the vacuum chamber, and the device has the characteristics of high efficiency, low pollution, convenient operation, good repeatability, good controllability and low requirements for site conditions, which can provide a novel technology for the simulation experiments of large-scale underground explosions in the vacuum chamber.
-
表 1 地下爆炸空腔气体势能计算表达式[10]
Table 1. Formulas for the potential energy of the cavity gas in underground explosions[10]
岩石特性 空腔气体势能 不含气体岩石 $ A = {{0.49q}/ {\bar r_{\text{n}}^{0.84}}} $ 仅含自由水的硅酸盐类岩石
(适用于花岗岩、凝灰岩、冲积层等岩石)$A = \dfrac{{0.49q}}{{\bar r_{\text{n}}^{0.84}}}\left( {1 + 5.8\eta _{\text{w}}^{0.7}} \right)$ 仅含碳酸气的碳酸盐类岩石
(适用于硬石膏、方解石、石灰岩等岩石)$A = \dfrac{{0.49q}}{{\bar r_{\text{n}}^{0.84}}}\left( {1 + 1.96\eta _{{\text{c}}{{\text{o}}_{\text{2}}}}^{0.7}} \right)$ 混合含气岩石 $A = \dfrac{{0.49q}}{{\bar r_{\text{n}}^{0.84}}}\left( {1 + 5.8\eta _{{\varepsilon }}^{0.7}} \right)$ 表 2 弹珠弹射装置适用性测试试验部分结果
Table 2. Partial test results of the applicability of the marble launcher
试验序号 高压气室压力/MPa 玻璃球壳直径/cm 玻璃球壳稳态压力/kPa 试验情况 1-1 1 10 0.7 活塞未发射 1-2 1.1 2-1 2 10 3.4 活塞正常发射,膜片破裂,活塞与炮管锥段齐平,入锥不充分 2-2 3.6 2-3 1.8 4-1 4 10 2.9 活塞正常发射,膜片破裂,入锥充分,玻璃球壳稳态压力波动较小 4-2 3.0 4-3 2.7 5-1 5 10 3.6 活塞正常发射,膜片破裂,入锥充分,玻璃球壳稳态压力偏高。 5-2 7.7 5-3 6.9 表 3 不同规模大当量地下爆炸真空室模拟试验主要参数
Table 3. Key parameters for the vacuum chamber simulation tests of large-scale underground explosions
表 4 爆源球形度试验
Table 4. Sphericity test for the explosion device
试验 介质 球壳中绝对气压/kPa 玻璃球壳埋深/cm 拍摄频率/kHz 高压气室压力/MPa S1 空气 100 − 5 4 S2 空气 180 − 5 4 S3 水 180 25 3 4 -
[1] ADUSHKIN V V, KHRISTOFOROV B D. Craters of large-scale surface explosions [J]. Combustion, Explosion, and Shock Waves, 2004, 40(6): 674–678. DOI: 10.1023/B:CESW.0000048270.62239.01. [2] SADOVSKII M A, ADUSHKIN V V, RODIONOV V N, et al. A method of modeling large cratering explosions [J]. Combustion, Explosion, and Shock Waves, 1969, 3(1): 73–79. DOI: 10.1007/BF00741616. [3] ADUSHKIN V V, PERNIK L M. Design of linear charges for caving a slope by a large-scale explosion [J]. Soviet Mining, 1989, 25(6): 505–509. DOI: 10.1007/BF02528298. [4] ADUSHKIN V V, KAMALYAN R Z, KOROLEV K D. Character of the interaction of concentrated excavation charges detonated at different times [J]. Combustion, Explosion, and Shock Waves, 1989, 25(6): 782–785. DOI: 10.1007/BF00758751. [5] BLINOV I M, VAKHRAMEEV Y S. The method for modelling large-scale outburst explosions by microexplosions of explosive charges [J]. Fizika Goreniya I Vzryva, 1995, 31(2): 102–109. [6] VAKHRAMEEV Y S. Physical foundations for approximately modeling explosions with ejecta [J]. Combustion, Explosion, and Shock Waves, 1995, 31(1): 120–125. DOI: 10.1007/BF00755969. [7] 徐小辉, 邱艳宇, 王明洋, 等. 大当量浅埋地下爆炸抛掷成坑效应的缩比模拟实验装置 [J]. 爆炸与冲击, 2018, 38(6): 1333–1343. DOI: 10.11883/bzycj-2017-0144.XU X H, QIU Y Y, WANG M Y, et al. Development of the testing apparatus for modeling large equivalent underground cratering explosions [J]. Explosion and Shock Waves, 2018, 38(6): 1333–1343. DOI: 10.11883/bzycj-2017-0144. [8] 徐小辉, 邱艳宇, 王明洋, 等. 大当量地下浅埋爆炸真空室模拟相似材料研究 [J]. 岩石力学与工程学报, 2018, 37(S1): 3550–3556. DOI: 10.13722/j.cnki.jrme.2016.1539.XU X H, QIU Y Y, WANG M Y, et al. Similar materials for vacuum chamber model test under large scale throw blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S1): 3550–3556. DOI: 10.13722/j.cnki.jrme.2016.1539. [9] 王明洋, 徐小辉, 邱艳宇, 等. 一种用于模拟爆炸效应的爆源装置: CN201710295250.6 [P]. 2018-11-13. [10] ADUSHKIN V V, SPIVAK A. Underground explosions: WGC-2015-03 [R]. Lexington: Weston Geophysical Corp, 2015. [11] 冯建宁, 彭炎午, 林俊德. 新型非火药驱动二级轻气炮内弹道诸问题的研究 [J]. 西北工业大学学报, 1994(3): 477–481.FENG J N, PENG Y W, LIN J D. On some problems of interior ballistics in a new type two-stage light gas gun with non-powder projection [J]. Journal of Northwestern Polytechnical University, 1994(3): 477–481. [12] TANG W Q, WANG Q, WEI B C, et al. Performance and modeling of a two-stage light gas gun driven by gaseous detonation [J]. Applied Sciences, 2020, 10(12): 4383. DOI: 10.3390/app10124383. [13] RINGROSE T J, DOYLE H W, FOSTER P S, et al. A hypervelocity impact facility optimised for the dynamic study of high pressure shock compression [J]. Procedia Engineering, 2017, 204: 344–351. DOI: 10.1016/j.proeng.2017.09.756. [14] 徐坤博, 龚自正. 超高速发射技术研究进展 [C] // 中国数学力学物理学高新技术交叉研究学会第十三届学术年会. 敦煌: 中国数学力学物理学高新技术交叉研究学会, 2010.