一种冲击波作用下结构毁伤算法研究

周朗 徐春光

周朗, 徐春光. 一种冲击波作用下结构毁伤算法研究[J]. 爆炸与冲击, 2022, 42(10): 104201. doi: 10.11883/bzycj-2021-0415
引用本文: 周朗, 徐春光. 一种冲击波作用下结构毁伤算法研究[J]. 爆炸与冲击, 2022, 42(10): 104201. doi: 10.11883/bzycj-2021-0415
ZHOU Lang, XU Chunguang. An algorithm for building structural damage under the effect of shock wave[J]. Explosion And Shock Waves, 2022, 42(10): 104201. doi: 10.11883/bzycj-2021-0415
Citation: ZHOU Lang, XU Chunguang. An algorithm for building structural damage under the effect of shock wave[J]. Explosion And Shock Waves, 2022, 42(10): 104201. doi: 10.11883/bzycj-2021-0415

一种冲击波作用下结构毁伤算法研究

doi: 10.11883/bzycj-2021-0415
详细信息
    作者简介:

    周 朗(1997- ),男,硕士研究生,zhoulang5@mail2.sysu.edu.cn

    通讯作者:

    徐春光(1977- ),男,博士,副教授,xuchg5@mail.sysu.edu.cn

  • 中图分类号: O383.2

An algorithm for building structural damage under the effect of shock wave

  • 摘要: 针对爆炸冲击波与建筑物结构相互作用过程,分析了冲击波与结构碎块作用机理,发展了一种能够模拟建筑物结构破坏及冲击波传播过程的计算模型和方法。采用建筑物结构工程毁伤载荷作为判据,处理结构在冲击波作用下的破坏问题;利用流固耦合界面算法处理结构运动引起的泄压效应,利用“虚拟网格通气技术”处理结构碎块对冲击波的阻碍作用,模拟了冲击波作用下典型建筑物的毁伤过程及冲击波传播过程。结果表明,该模型在模拟冲击波与结构的作用过程中,压力计算结果与非结构动网格模拟结果符合较好;在典型建筑物毁伤过程的数值模拟中,计算得到的建筑物毁伤效果和冲击波超压分布与建筑物物理毁伤特点符合。
  • 图  1  建筑物墙体简化模型

    Figure  1.  Model of a simplified building wall

    图  2  冲击波推动结构飞散计算模型

    Figure  2.  Computational model of shock wave driven structural dispersion

    图  3  压力等值线图

    Figure  3.  Pressure contour diagrams

    图  4  冲击波传播示意图

    Figure  4.  Schematic of shock wave propagation

    图  5  网格位置不变情况下泄压作用模拟示意图

    Figure  5.  Schematic of pressure relief simulation with constant grid position

    图  6  虚拟网格透气技术原理图[1]

    Figure  6.  Schematic of virtual mesh ventilation technique[1]

    图  7  壅塞效应模拟示意图

    Figure  7.  Schematic of choking effect

    图  8  虚拟透气计算模型

    Figure  8.  Computational model of virtual ventilation

    图  9  坐标定义

    Figure  9.  Coordinate definition

    图  10  两种模型在100 MPa条件下的监测点压力变化(算例1和5)

    Figure  10.  Monitoring point pressure changes under two computational models at 100 MPa (examples 1 and 5)

    图  11  两种模型在50 MPa条件下的监测点压力变化(算例2和6)

    Figure  11.  Monitoring point pressure changes under two computational models at 50 MPa (examples 2 and 6)

    图  12  两种模型在100 MPa条件下的监测点压力变化(算例3和7)

    Figure  12.  Monitoring point pressure changes under two computational models at 100 MPa (examples 3 and 7)

    图  13  两种模型在100 MPa条件下的监测点压力变化(算例4和8)

    Figure  13.  Monitoring point pressure changes under two computational model at 100 MPa (examples 4 and 8)

    图  14  建筑物计算模型

    Figure  14.  Computational model of building

    图  15  建筑物毁伤计算结果

    Figure  15.  Calculation of building damage

    图  16  爆炸流场超压云图

    Figure  16.  Explosion field overpressure nephogram

    图  17  爆炸房间406超压计算结果

    Figure  17.  Blast room 406 overpressure calculations

    表  1  算例参数设置

    Table  1.   Example parameter setting

    模型算例高压气团
    压力/MPa
    高压气团
    半径/m
    高压气团中心
    坐标/m
    111000.5(1, 0, 0)
    2 500.5(1, 0, 0)
    31000.5(1, −1, 0)
    41000.5(1, 0, 1)
    251000.5(1, 0, 0)
    6 500.5(1, 0, 0)
    71000.5(1, −1, 0)
    81000.5(1, 0, 1)
    注:高压气团中心坐标为相对于堵块中心的坐标
    下载: 导出CSV

    表  2  监测点超压经验公式计算结果

    Table  2.   The numerical calculation results of shock wave overpressure under different monitoring point

    监测点位置与爆心距离/m超压值/MPa
    左侧墙壁中心2.726.6
    右侧墙壁中心3.117.5
    下楼板中心2.239.6
    走廊隔墙中心2.533.7
    下载: 导出CSV
  • [1] HENRYCH J, ABRAHAMSON G R. The dynamics of explosion and its use [M]. Amsterdam: Elsevier Scientific Pub. Co. , 1979: 218.
    [2] 李翼祺, 马素贞. 爆炸力学 [M]. 北京: 科学出版社, 1992: 258–317.
    [3] 北京工业学院八系. 爆炸及其作用 [M]. 北京: 国防工业出版社, 1978.
    [4] BAKER W E. Explosions in air [M]. Austin: University of Texas Press, 1974: 6–10.
    [5] 刘伟, 郑毅, 秦飞. 近地面TNT爆炸的试验研究和数值模拟 [J]. 爆破, 2012, 29(1): 5–9, 26. DOI: 10.3963/j.issn.1001-487X.2012.01.002.

    LIU W, ZHENG Y, QIN F. Experimental and numerical simulation of TNT explosion on the ground [J]. Blasting, 2012, 29(1): 5–9, 26. DOI: 10.3963/j.issn.1001-487X.2012.01.002.
    [6] 宁建国, 王仲琦, 赵衡阳, 等. 爆炸冲击波绕流的数值模拟研究 [J]. 北京理工大学学报, 1999, 19(5): 543–547. DOI: 10.3969/j.issn.1001-0645.1999.05.003.

    NING J G, WANG Z Q, ZHAO H Y, et al. Study on the flow of the explosive shock wave around the wall numberical simulation [J]. Journal of Beijing Institute of Technology, 1999, 19(5): 543–547. DOI: 10.3969/j.issn.1001-0645.1999.05.003.
    [7] 王飞, 朱立新, 顾文彬, 等. 基于ALE算法的空气冲击波绕流数值模拟研究 [J]. 工程爆破, 2002, 8(2): 13–16. DOI: 10.3969/j.issn.1006-7051.2002.02.004.

    WANG F, ZHU L X, GU W B, et al. Numerical simulation of shock wave around-flow on basis of ALE algorithm [J]. Engineering Blasting, 2002, 8(2): 13–16. DOI: 10.3969/j.issn.1006-7051.2002.02.004.
    [8] 张晓伟, 张浩, 杨茂林, 等. 隔爆墙后爆炸冲击波绕射与超压分布规律 [J]. 北京理工大学学报, 2021, 41(4): 372–379. DOI: 10.15918/j.tbit1001-0645.2020.069.

    ZHANG X W, ZHANG H, YANG M L, et al. Diffraction and overpressure distribution of blast wave behind explosion isolation wall [J]. Transactions of Beijing Institute of Technology, 2021, 41(4): 372–379. DOI: 10.15918/j.tbit1001-0645.2020.069.
    [9] 孔德森, 孟庆辉, 史明臣, 等. 爆炸冲击波在地铁隧道内的传播规律研究 [J]. 地下空间与工程学报, 2012, 8(1): 48–55,64. DOI: 10.3969/j.issn.1673-0836.2012.01.009.

    KONG D S, MENG Q H, SHI M C, et al. The dissemination rule of blasting shock-wave in subway tunnel [J]. Chinese Journal of Underground Space and Engineering, 2012, 8(1): 48–55,64. DOI: 10.3969/j.issn.1673-0836.2012.01.009.
    [10] 刘祥, 孙宇新, 钟垂琦. 隧道口部爆炸冲击波传播规律数值仿真分析 [J]. 防护工程, 2020, 42(1): 12–17. DOI: 10.3969/j.issn.1674-1854.2020.01.003.

    LIU X, SUN Y X, ZHONG C Q. Numerical simulation analysis on propagation law of explosion waves at tunnel entrance [J]. Protective Engineering, 2020, 42(1): 12–17. DOI: 10.3969/j.issn.1674-1854.2020.01.003.
    [11] 舒奕展, 王高辉, 卢文波, 等. 爆炸冲击波在双层地铁站内的传播规律研究 [J]. 地下空间与工程学报, 2020, 16(6): 1859–1865.

    SHU Y Z, WANG G H, LU W B, et al. Study on propagation law of explosive shock wave inside metro station [J]. Chinese Journal of Underground Space and Engineering, 2020, 16(6): 1859–1865.
    [12] 张玉磊, 王胜强, 袁建飞, 等. 方形坑道内爆炸冲击波传播规律 [J]. 含能材料, 2020, 28(1): 46–51. DOI: 10.11943/CJEM2018305.

    ZHANG Y L, WANG S Q, YUAN J F, et al. Experimental study on the propagation law of blast waves in a square tunnel [J]. Chinese Journal of Energetic Materials, 2020, 28(1): 46–51. DOI: 10.11943/CJEM2018305.
    [13] 邓荣兵, 金先龙, 陈峻, 等. 爆炸冲击波对玻璃幕墙破坏作用的多物质ALE有限元模拟 [J]. 高压物理学报, 2010, 24(2): 81–87. DOI: 10.11858/gywlxb.2010.02.001.

    DENG R B, JIN X L, CHEN J, et al. Application of ALE multi-material formulation for blast analysis of glass curtain wall [J]. Chinese Journal of High Pressure Physics, 2010, 24(2): 81–87. DOI: 10.11858/gywlxb.2010.02.001.
    [14] 董湘乾. 框架结构在爆炸冲击作用下的动力响应分析研究 [D]. 长沙: 湖南大学, 2010: 14–23. DOI: 10.7666/d.y1724143.
    [15] 张秀华, 王钧, 赵金友, 等. 室内燃气爆炸冲击波的特性及传播规律 [J]. 工程力学, 2014, 31(S1): 258–264. DOI: 10.6052/j.issn.1000-4750.2013.04.S050.

    ZHANG X H, WANG J, ZHAO J Y, et al. Blast shock wave characteristics and propagation law of internal gas explosion [J]. Engineering Mechanics, 2014, 31(S1): 258–264. DOI: 10.6052/j.issn.1000-4750.2013.04.S050.
    [16] 游俊. 爆炸冲击波与破片联合作用下砌体墙数值模拟 [D]. 湘潭: 湘潭大学, 2020: 24–35. DOI: 10.27426/d.cnki.gxtdu.2020.000510.

    YOU J. Numerical simulation of masonry wall under combined action of blast and fragments [D]. Xiangtan: Xiangtan University, 2020: 24–35. DOI: 10.27426/d.cnki.gxtdu.2020.000510.
    [17] 隋树元, 王树山. 终点效应学 [M]. 北京: 国防工业出版社, 2000: 279–292.

    SUI S Y, WANG S S. Terminal effects [M]. Beijing: National Defense Industry Press, 2000: 279–292.
    [18] LÖHNER R, YANG C, BAUM J D, et al. The numerical simulation of strongly unsteady flow with hundreds of moving bodies [J]. International Journal for Numerical Methods in Fluids, 1999, 31(1): 113–120.
    [19] BAUM J D, LUO H, MESTREAU E L, et al. A coupled CFD/CSD methodology for modeling weapon detonation and fragmentation [C]//Proceedings of the 37th Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 1999. DOI: 10.2514/6.1999-794.
    [20] BAUM J D, LUO H, MESTREAU E L, et al. Recent developments of a coupled CFD/CSD methodology [C]//Proceedings of the International Conference on Computational Science-Part Ⅰ. San Francisco: Springer, 2001: 1087−1097. DOI: 10.1007/3-540-45545-0_120.
    [21] 王巍, 刘君, 白晓征, 等. 非结构动网格技术及其在超声速飞行器头罩分离模拟中的应用 [J]. 空气动力学学报, 2008, 26(1): 131–135. DOI: 10.3969/j.issn.0258-1825.2008.01.025.

    WANG W, LIU J, BAI X Z, et al. DUM research and apply to solve the fairing separating form hypersonic vehicle [J]. Acta Aerodynamica Sinica, 2008, 26(1): 131–135. DOI: 10.3969/j.issn.0258-1825.2008.01.025.
    [22] 王巍, 刘君, 刘冰, 等. 火箭助推器从芯级飞行器动态分离过程的数值模拟 [J]. 宇航学报, 2006, 27(4): 766–770. DOI: 10.3321/j.issn:1000-1328.2006.04.039.

    WANG W, LIU J, LIU B, et al. Numerical simulation the process of the rocket booster separating form spaceship [J]. Journal of Astronautics, 2006, 27(4): 766–770. DOI: 10.3321/j.issn:1000-1328.2006.04.039.
    [23] 王巍, 刘君, 郭正. 子母弹抛壳过程非定常流动的数值模拟 [J]. 空气动力学学报, 2006, 24(3): 285–288. DOI: 10.3969/j.issn.0258-1825.2006.03.003.

    WANG W, LIU J, GUO Z. Numerical simulation of release the cover form cargo projectile [J]. Acta Aerodynamica Sinica, 2006, 24(3): 285–288. DOI: 10.3969/j.issn.0258-1825.2006.03.003.
    [24] 刘君, 白晓征, 郭正. 非结构动网格计算方法: 及其在包含运动界面的流场模拟中的应用 [M]. 长沙: 国防科技大学出版社, 2009.
    [25] 饶国宁. 爆炸能量输出特性及爆炸波与目标作用的研究[D]. 南京: 南京理工大学, 2007: 21−26.
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  263
  • HTML全文浏览量:  130
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-30
  • 修回日期:  2022-01-08
  • 网络出版日期:  2022-09-13
  • 刊出日期:  2022-10-31

目录

    /

    返回文章
    返回