Design of corner connection structures of box-type cabins subjected to internal blast loading
-
摘要: 通过有限元软件LS-DYNA建立了舱内爆炸载荷下箱型舱室动响应数值模型,并借助文献试验结果验证了数值模型的可靠性,研究了平板型、内凹型、外凸型、箭头型、箭矢型、背面弧型等6种角隅连接结构对舱内爆炸载荷下箱型舱室变形、特征位置压力和破坏模式的影响,分析了内爆效应下角隅连接结构的失效机理。数值结果表明:舱壁角隅位置是舱内爆炸载荷作用下舱室易发生破坏撕裂的特征位置;相比无连接结构,平板型连接结构对舱壁最大塑性变形改善最大,降低幅度达到了31.9%;背面弧型连接结构能够使箱型舱室角隅等效塑性应变降低约60%;设置连接结构能够改变高塑性应变的发生位置,进而改变箱型舱室的破坏模式;采用平板型、内凹型、背面弧型连接结构的箱型舱室能够有效避免角隅失效破坏。Abstract: Semi-armor-piercing warhead is likely to penetrate into the inner space of warship to induce severe damage. Published research indicated that the corner part of ship cabin tended to fail first. In present study, the novel design of corner structure aims to improve the capability of explosion-proof of ship cabin. Motivated by this idea, six kinds of typical corner connection structures were designed using the concept of weakening converged shock wave, improving the structure stress and strain state, coordinating deformation and transforming failure modes. The LS-DYNA software was employed to investigate the dynamic response of cabin structure subjected internal blast loading. Lagrange shell element and solid element based on multi-material ALE algorithm are used to simulate steel structure and air region, respectively. The interaction between shock wave and structure was fulfilled using fluid-structure interaction algorithm. The accuracy of the numerical model proposed in present paper was validated by comparing the published experimental results. Main attention of present study focuses on the effects of corner connection structure on the maximum deflection, corner pressure and deformation/failure mode of cabin structure. It attempts to explore the failure mechanisms of cabin structure. Simulation results confirm that the corner position of cabin structure is susceptive to fail under internal blast loading. Compared with the original structure without corner connection, the existence of corner connection structure can obviously reduce the plastic deformation of cabin structure. To be specific, the corner connection in the flat-plate form could reduce the maximum deflection by up to 31.9% relative to the original structure. In addition, the application of the corner connection in the arc shape could decrease the equivalent plastic strain by about 60%. Moreover, the existence of corner connection structure could ameliorate the position of high plastic strain and the failure modes of cabin structure. In present study, the corner connections in flat-plate form, concave form and arc shape could effectively avoid the failure behavior of cabin corner.
-
表 1 Q235钢的Johnson-Cook模型参数[15]
Table 1. Johnson-Cook material model parameters used for Q235 steel[15]
$ \rho $/(kg·m−3) E/GPa G/GPa v AJC/MPa BJC/MPa n c $ {\dot{\varepsilon }}_{0} $/s−1 m 7830 210 80.8 0.3 370 438 0.60 0.01 1.00 0.669 $ \rho $/(kg·m−3) $ D $/(m·s−2) AJWL/GPa BJWL/GPa R1 R2 $ \omega $ ETNT/(GJ·m−3) V0 1630 6930 3.712 3.23 4.15 0.95 0.3 6.0 1 表 3 计算工况及数值结果
Table 3. Computational conditions and numerical results
工况 连接结构型式 l/mm m/g 破损形式 $ {\delta }_{s} $/mm YS-1 原始舱室 50 187.5 − 55.2 YS-2 80 834.6 − 83.8 YS-3 85 1001.0 角隅撕裂 − PB-1 平板型 50 187.5 − 30.5 PB-2 80 834.6 − 57.1 PB-3 85 1001.0 未见破损 65.4 NA-1 内凹型 50 187.5 − 34.6 NA-2 80 834.6 − 71.2 NA-3 85 1001.0 未见破损 80.1 WT-1 外凸型 50 187.5 − 35.2 WT-2 80 834.6 壁板飞出 − WT-3 85 1001.0 壁板飞出 − JT-1 箭头型 50 187.5 − 31.6 JT-2 80 834.6 上下板飞出 64.8 JT-3 85 1001.0 上下板飞出,侧壁角隅撕裂 − JS-1 箭矢型 50 187.5 − 31.5 JS-2 80 834.6 上板角隅撕裂,下板飞出 64.3 JS-3 85 1001.0 上下板飞出,侧壁角隅撕裂 − BMH-1 背面弧型 50 187.5 − 38.8 BMH-2 80 834.6 − 71.4 BMH-3 85 1001.0 未见破损 79.1 注:l为TNT装药边长,m为TNT装药质量,$ {\delta }_{s} $为中心点最大形变。 表 4 箱型舱室内特征位置压力峰值
Table 4. Peak pressure in feature position of box cabin.
工况 pA/MPa pB/MPa pC/MPa p0/MPa λ1=pA/pC λ2=pB/pC YS-1 18.0 31.0 12.6 5.1 1.43 2.46 PB-1 14.1 18.3 12.3 5.1 1.15 1.49 NA-1 19.2 33.4 23.5 5.1 0.82 1.42 WT-1 10.2 22.0 17.7 5.1 0.58 1.24 YS-2 29.4 54.5 33.2 10.9 0.89 1.64 PB-2 22.5 36.6 35.3 10.5 0.64 1.04 NA-2 46.0 88.2 76.7 11.4 0.60 1.15 WT-2 − − − − − − 注:pA、pB和pC分别为测点A、B和C的压力峰值,p0测点C处的初始冲击波压力,λ1=pA/pC, λ2=pB/pC。 -
[1] 虞德水, 于川, 张远平, 等. 半穿甲战斗部对模拟舰船结构毁伤效应试验研究 [C]//第四届全国爆炸力学实验技术学术会议论文集. 武夷山: 安徽省力学学会, 2006: 294–299. [2] 张磊, 杜志鹏, 高鹏, 等. 水面舰艇舱内爆炸毁伤载荷研究进展 [J]. 中国科学: 物理学 力学 天文学, 2021, 51(12): 124605. DOI: 10.1360/SSPMA-2020-0378.ZHANG L, DU Z P, GAO P, et al. Research advance of damage load of surface ship cabin explosion [J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2021, 51(12): 124605. DOI: 10.1360/SSPMA-2020-0378. [3] GERETTO C, YUEN S C K, NURICK G N. An experimental study of the effects of degrees of confinement on the response of square mild steel plates subjected to blast loading [J]. International Journal of Impact Engineering, 2015, 79: 32–44. DOI: 10.1016/j.ijimpeng.2014.08.002. [4] 郑成, 孔祥韶, 徐维铮, 等. 舱内爆炸载荷作用下加筋板动态响应试验研究 [J]. 中国造船, 2018, 59(2): 129–139. DOI: 10.3969/j.issn.1000-4882.2018.02.014.ZHENG C, KONG X S, XU W Z, et al. Experimental study on dynamic response of stiffened plates subjected to internal blast loads [J]. Shipbuilding of China, 2018, 59(2): 129–139. DOI: 10.3969/j.issn.1000-4882.2018.02.014. [5] 李伟, 朱锡, 梅志远, 等. 战斗部舱内爆炸对舱室结构毁伤的实验研究 [J]. 舰船科学技术, 2009, 31(3): 34–37. DOI: 10.3404/j.issn.1672-7649.2009.03.005.LI W, ZHU X, MEI Z Y, et al. Experimental studies on damage effect of missile warhead on cabin’s structure under internal explosion [J]. Ship Science and Technology, 2009, 31(3): 34–37. DOI: 10.3404/j.issn.1672-7649.2009.03.005. [6] NURICK G N, GELMAN M E, MARSHALL N S. Tearing of blast loaded plates with clamped boundary conditions [J]. International Journal of Impact Engineering, 1996, 18(7/8): 803–827. DOI: 10.1016/S0734-743X(96)00026-7. [7] 陈鹏宇, 侯海量, 金键, 等. 舰船舱内爆炸载荷简化载荷计算模型 [J]. 舰船科学技术, 2020, 42(17): 22–29. DOI: 10.3404/j.issn.1672-7649.2020.09.005.CHEN P Y, HOU H L, JIN J, et al. Simplified calculation model for explosion loading in ship cabin [J]. Ship Science and Technology, 2020, 42(17): 22–29. DOI: 10.3404/j.issn.1672-7649.2020.09.005. [8] 侯海量, 朱锡, 梅志远. 舱内爆炸载荷及舱室板架结构的失效模式分析 [J]. 爆炸与冲击, 2007, 27(2): 151–158. DOI: 10.11883/1001-1455(2007)02-0151-08.HOU H L, ZHU X, MEI Z Y. Study on the blast load and failure mode of ship structure subject to internal explosion [J]. Explosion and Shock Waves, 2007, 27(2): 151–158. DOI: 10.11883/1001-1455(2007)02-0151-08. [9] 侯海量, 朱锡, 李伟, 等. 舱内爆炸冲击载荷特性实验研究 [J]. 船舶力学, 2010, 14(8): 901–907. DOI: 10.3969/j.issn.1007-7294.2010.08.011.HOU H L, ZHU X, LI W, et al. Experimental studies on characteristics of blast loading when exploded inside ship cabin [J]. Journal of Ship Mechanics, 2010, 14(8): 901–907. DOI: 10.3969/j.issn.1007-7294.2010.08.011. [10] 姚术健. 箱形结构内部爆炸等效缩比实验方法及破坏特性研究 [D]. 长沙: 国防科学技术大学, 2016: 125-156.YAO S J. Investigations on the scaling method and damage features of box-shaped structures under internal blast loading [D]. Changsha: National University of Defense Technology, 2016: 125–156. [11] 王佳颖, 张世联, 武少波. 舱内爆炸载荷下双层横舱壁设计初探 [J]. 振动与冲击, 2011, 30(12): 209–215. DOI: 10.13465/j.cnki.jvs.2011.12.046.WANG J Y, ZHANG S L, WU S B. Preliminary design of double-bulkhead for a warship under cabin internal explosion [J]. Journal of Vibration and Shock, 2011, 30(12): 209–215. DOI: 10.13465/j.cnki.jvs.2011.12.046. [12] 孔祥韶, 吴卫国, 李俊, 等. 角隅结构对舱内爆炸载荷影响的实验研究 [J]. 中国造船, 2012, 53(3): 40–50. DOI: 10.3969/j.issn.1000-4882.2012.03.007.KONG X S, WU W G, LI J, et al. Experimental research of influence of corner structure on blast loading under inner explosion [J]. Shipbuilding of China, 2012, 53(3): 40–50. DOI: 10.3969/j.issn.1000-4882.2012.03.007. [13] 李营, 张磊, 杜志鹏, 等. 改变应力状态的抗内爆炸舱壁 [J]. 船舶力学, 2020, 24(9): 1151–1157. DOI: 10.3969/j.issn.1007-7294.2020.09.007.LI Y, ZHANG L, DU Z P, et al. Stress state changing bulkhead resistance to internal blast [J]. Journal of Ship Mechanics, 2020, 24(9): 1151–1157. DOI: 10.3969/j.issn.1007-7294.2020.09.007. [14] 李营, 张磊, 杜志鹏, 等. 舱内爆炸作用下舰船舱壁失效机理与抗破损设计 [J]. 中国造船, 2019, 60(3): 27–34. DOI: 10.3969/j.issn.1000-4882.2019.03.003.LI Y, ZHANG L, DU Z P, et al. Failure mechanism and anti-damage design of bulkhead under internal blast [J]. Shipbuilding of China, 2019, 60(3): 27–34. DOI: 10.3969/j.issn.1000-4882.2019.03.003. [15] YAO S J, ZHANG D, LU F Y, et al. A combined experimental and numerical investigation on the scaling laws for steel box structures subjected to internal blast loading [J]. International Journal of Impact Engineering, 2017, 102: 36–46. DOI: 10.1016/j.ijimpeng.2016.12.003. [16] 李旭东. 内爆准静态压力载荷对舱壁结构的毁伤效应研究 [D]. 太原: 中北大学, 2020: 101–102.LI X D. Study on the damage effect of internal explosive quasi-static pressure loads to bulkhead structures [D]. Taiyuan: North University of China, 2020: 101–102. [17] CHEN G C, CHENG Y S, ZHANG P, et al. Design and modelling of auxetic double arrowhead honeycomb core sandwich panels for performance improvement under air blast loading [J]. Journal of Sandwich Structures & Materials, 2021, 23(8): 3574–3605. DOI: 10.1177/1099636220935563. [18] 李旭东, 尹建平, 赵鹏铎, 等. 固支钢板在爆炸与均布载荷耦合作用下的破坏 [J]. 兵器装备工程学报, 2021, 42(4): 26–30, 36. DOI: 10.11809/bqzbgcxb2021.04.005.LI X D, YIN J P, ZHAO P D, et al. Failure of clamped steel plates under local explosion and uniformly distributed load [J]. Journal of Ordnance Equipment Engineering, 2021, 42(4): 26–30, 36. DOI: 10.11809/bqzbgcxb2021.04.005. -