A critical safety wave pressure model of typical fishes under the action of underwater blasting shock waves
-
摘要: 为了探究水下爆破冲击波对鱼类损伤的影响,首先通过理论分析探讨了水下冲击波在鱼体的传播过程和对鱼鳔的损伤机理,构建了典型有鳔鱼类临界安全波压模型,并结合实测数据、参考相关文献,确定了模型参数。结果表明,典型有鳔鱼类临界安全波压与鱼体长呈线性关系。其中,水介质和鱼鳔壁介质的波阻抗比、鱼鳔宽度因数、鱼鳔壁厚因数、鱼鳔径向临界拉应力因数和鱼鳔形状因数分别为0.3~2.0、0.04~0.09、0.002、60和0.6~1.1。然后,根据典型有鳔鱼类临界安全波压模型参数,得到最大和最小鱼类临界安全波压模型分别为pic,max=30L和pic,min=3L(pic,max的单位为kPa,L的单位为cm)。最后,通过鱼类损伤情况的实测数据和文献数据,验证了鱼类临界安全波压模型。结果表明,不同体长的鱼类在不同冲击波压力时的受损状况分布,基本与鱼类所能承受的最大和最小的临界安全波压范围符合。并根据鱼类临界安全波压与体长的关系,划分了死亡区、存活有影响区和存活无影响区。Abstract: To investigate the propagation process of the underwater blasting shock wave in a fish body and its effect on typical swim bladder fishes, a critical safety wave pressure model for typical fishes was established and verified through theoretical analysis and field tests. According to the transverse reflection pattern of one-dimensional elastic compression wave between different media, the relationship between the critical safety wave pressure and the body length of typical swim bladder fishes was established. The length and mechanical properties of the swim bladder and fish body were measured using a vernier caliper, a digital micrometer, and a microcomputer tensile tester. Based on the measured data, the positive correlations of the length, width, wall thickness, and radial critical tensile stress of the swim bladder with the fish body length were determined, and the parameters in the fish critical safety wave pressure model were calibrated. The wave impedance ratio of the water medium and swim bladder wall medium was 0.3–2.0. The width, wall thickness, shape, and radial critical tensile stress coefficients of the swimming bladder were 0.04–0.09, 0.002, 0.6–1.1 and 60, respectively. The underwater blasting shock wave pressure and its effect on the fishes were measured using a blast wave tester, and the damage to the fishes was divided into three types: death, survival with influence, and survival without influence. The fish critical safety wave pressure model was verified by the statistical results of fish damage. The results show that the damage states of fishes with different body lengths at different shock pressures are conformed with the maximum and minimum critical safety wave pressure that the fishes can withstand. The proposed fish critical safety wave pressure model can be used to describe the relationship between the critical safety wave pressure and body length of the swim bladder fishes under the action of the underwater blasting shock waves. The research achievement can provide a theoretical basis for ecological protection of the fishes in the waterway regulation project of the upper reaches of the Yangtze River.
-
表 1 临界安全波压模型相关参数的实测数据
Table 1. Measured parameters related to the critical safety wave pressure model
鱼种类 鱼体长/cm 鱼鳔长/cm 鱼鳔宽/cm 鱼鳔高/cm 鱼鳔壁厚/cm 鱼鳔径向临界拉应力/kPa 鱼鳔形状因数 鲫鱼 12.6 2.7 1.2 1.0 0.0141 591 0.89 14.5 2.8 1.3 1.2 0.0189 423 0.95 16.2 3.4 1.3 1.3 0.0164 457 1.00 19.4 3.4 1.3 1.1 0.0187 523 0.90 22.9 3.5 2.0 1.2 0.0191 654 0.70 24.6 3.6 2.1 1.7 0.0193 628 0.87 28.6 4.0 2.3 1.5 0.0232 811 0.75 31.5 4.6 2.4 2.2 0.0256 1021 0.95 31.7 4.7 2.4 2.3 0.0260 953 0.97 35.5 5.6 3.2 1.8 0.0287 1625 0.67 鲢鱼 42.6 6.4 3.5 3.7 0.0518 1100 1.04 46.3 7.7 3.8 3.3 0.0591 1160 0.91 49.0 8.5 4.2 3.6 0.0660 1240 0.90 51.5 8.8 3.8 2.4 0.0709 2210 0.73 51.7 9.3 4.4 4.7 0.0718 2230 1.04 56.4 10.2 4.2 2.1 0.0756 2440 0.61 58.0 10.8 4.6 2.6 0.0771 2500 0.67 59.3 11.2 4.7 3.6 0.0812 2660 0.84 61.0 11.4 5.8 3.5 0.0832 3450 0.70 63.1 11.9 5.9 3.2 0.0826 3210 0.65 草鱼 36.6 7.7 1.8 1.7 0.0476 830 0.96 38.0 8.2 2.0 1.1 0.0501 1960 0.66 39.3 8.5 1.9 1.6 0.0514 1390 0.89 39.5 9.9 2.2 2.0 0.0585 1340 0.94 40.6 10.4 2.6 2.2 0.0614 1440 0.90 41.0 11.0 2.2 1.7 0.0537 1960 0.84 41.4 8.4 1.9 2.2 0.0621 1890 1.10 50.2 12.1 2.3 2.3 0.0776 2430 1.00 59.1 14.0 3.0 2.6 0.0842 2560 0.91 60.1 14.4 3.2 2.1 0.0714 2840 0.75 表 2 有鳔鱼类的损伤
Table 2. Damages for swim bladder fishes
鱼种类 鱼体长/cm 压力/kPa 损伤结果 判定结果 草鱼 30~48 81 鱼类存活,无变化 鱼类存活,无影响 6~15 514 鱼类存活,但行动迟缓 鱼类存活,有影响 鲢鱼 15~30 150 鱼类存活,但行动迟缓 鱼类存活,有影响 16~35 2000 60%受到严重损伤当即死亡,
40%受到轻微损伤在爆破结束后一小时内逐渐死亡鱼类死亡 青鱼、草鱼、鲢鱼、鳙鱼 6~18 706 青鱼全部死亡,草鱼约75%死亡,鲢鱼和鳙鱼约50%死亡 鱼类死亡 鲫鱼[11] 15~40 927 鱼类存活,但行动迟缓 鱼类存活,有影响 1193 33%鱼类死亡 鱼类死亡 2611 鱼类全部死亡 鱼类死亡 -
[1] 张先炳, 杨胜发, 杨威, 等. 长江上游宜宾-江津与涪陵-丰都江段鱼类早期资源分布研究 [J]. 淡水渔业, 2021, 51(5): 51–59. DOI: 10.3969/j.issn.1000-6907.2021.05.007.ZHANG X B, YANG S F, YANG W, et al. The distribution of the early-stage fish resources between Yibin-Jiangjin and Fuling-Fengdu in the upper reaches of the Yangtze River [J]. Freshwater Fisheries, 2021, 51(5): 51–59. DOI: 10.3969/j.issn.1000-6907.2021.05.007. [2] 高天珩, 田辉伍, 叶超, 等. 长江上游珍稀特有鱼类国家级自然保护区干流段鱼类组成及其多样性 [J]. 淡水渔业, 2013, 43(2): 36–42. DOI: 10.3969/j.issn.1000-6907.2013.02.007.GAO T H, TIAN H W, YE C, et al. Diversity and composition of fish in the mainstream of national nature reserve of rare and endemic fish in the upper Yangtze River [J]. Freshwater Fisheries, 2013, 43(2): 36–42. DOI: 10.3969/j.issn.1000-6907.2013.02.007. [3] 段辛斌. 长江上游鱼类资源现状及早期资源调查研究 [D]. 武汉: 华中农业大学, 2008: 1−6. DOI: 10.7666/d.y1598376. [4] 喻灿星, 覃国杰, 曾丽. 内河航道水下炸礁钻孔爆破技术研究 [J]. 工程爆破, 2021, 27(4): 58–63. DOI: 10.19931/j.EB.20200273.YU C X, QIN G J, ZENG L. Research on technology of underwater reef drilling blasting in an inland waterway [J]. Engineering Blasting, 2021, 27(4): 58–63. DOI: 10.19931/j.EB.20200273. [5] 李金河, 赵继波, 谭多望, 等. 炸药水中爆炸的冲击波性能 [J]. 爆炸与冲击, 2009, 29(2): 172–176. DOI: 10.11883/1001-1455(2009)02-0172-05.LI J H, ZHAO J B, TAN D W, et al. Underwater shock wave performances of explosives [J]. Explosion and Shock Waves, 2009, 29(2): 172–176. DOI: 10.11883/1001-1455(2009)02-0172-05. [6] 赵根, 吴从清, 王文辉. 爆破水中冲击波对鱼类损伤研究 [J]. 工程爆破, 2011, 17(4): 103–105, 93. DOI: 10.3969/j.issn.1006-7051.2011.04.025.ZHAO G, WU C Q, WANG W H. Research on blasting shock wave in water to damage of fish [J]. Engineering Blasting, 2011, 17(4): 103–105, 93. DOI: 10.3969/j.issn.1006-7051.2011.04.025. [7] 李文涛, 张秀梅. 水下爆破施工对鱼类影响的估算及预防措施 [J]. 海洋科学, 2003, 27(11): 20–23. DOI: 10.3969/j.issn.1000-3096.2003.11.005.LI W T, ZHANG X M. Impact and mitigation measures for fish communities exposed to underwater explosion [J]. Marine Sciences, 2003, 27(11): 20–23. DOI: 10.3969/j.issn.1000-3096.2003.11.005. [8] 贾虎, 沈兆武. 空气隔层对水中冲击波的衰减特性 [J]. 爆炸与冲击, 2012, 32(1): 61–66. DOI: 10.11883/1001-1455(2012)01-0061-06.JIA H, SHEN Z W. An investigation into attenuation of underwater shockwave by air interlayer [J]. Explosion and Shock Waves, 2012, 32(1): 61–66. DOI: 10.11883/1001-1455(2012)01-0061-06. [9] 樊自建, 沈兆武, 马宏昊. 水中空气隔层对冲击波传播衰减作用的初步探讨 [J]. 工程爆破, 2007, 13(2): 7–10. DOI: 10.3969/j.issn.1006-7051.2007.02.002.FAN Z J, SHEN Z W, MA H H. Primary study on attenuation of underwater shock wave by using air insulation [J]. Engineering Blasting, 2007, 13(2): 7–10. DOI: 10.3969/j.issn.1006-7051.2007.02.002. [10] 徐爽, 赵宁, 王春武, 等. 水/气多介质问题的界面处理方法 [J]. 爆炸与冲击, 2015, 35(3): 326–334. DOI: 10.11883/1001-1455-(2015)03-0326-09.XU S, ZHAO N, WANG C W, et al. Interface treating methods for the gas-water multi-phase flows [J]. Explosion and Shock Waves, 2015, 35(3): 326–334. DOI: 10.11883/1001-1455-(2015)03-0326-09. [11] 尚龙生, 戴云丛, 刘现明, 等. 水中爆破对双台子河口渔场的影响 [J]. 海洋环境科学, 1994, 13(3): 23–26,32. [12] KEEVIN T M. A review of natural resource agency recommendations for mitigating the impacts of underwater blasting [J]. Reviews in Fisheries Science, 1998, 6(4): 281–313. DOI: 10.1080/10641269891314302. [13] 周杰, 陶钢, 王健. 爆炸冲击波对肺损伤的数值模拟 [J]. 爆炸与冲击, 2012, 32(4): 418–422. DOI: 10.11883/1001-1455(2012)04-0418-05.ZHOU J, TAO G, WANG J. Numerical simulation of lung injury induced by shock wave [J]. Explosion and Shock Waves, 2012, 32(4): 418–422. DOI: 10.11883/1001-1455(2012)04-0418-05. [14] WIERNICKI C J, LIANG D, BAILEY H, et al. The effect of swim bladder presence and morphology on sound frequency detection for fishes [J]. Reviews in Fisheries Science & Aquaculture, 2020, 28(4): 459–477. DOI: 10.1080/23308249.2020.1762536. [15] HALVORSEN M B, CASPER B M, WOODLEY C M, et al. Threshold for onset of injury in Chinook salmon from exposure to impulsive pile driving sounds [J]. PLoS One, 2012, 7(6): e38968. DOI: 10.1371/journal.pone.0038968. [16] 杨志焕, 朱佩芳, 蒋建新, 等. 水下冲击波的生物效应 [J]. 爆炸与冲击, 2003, 23(2): 134–139.YANG Z H, ZHU P F, JIANG J X, et al. Bio-effects of underwater blast waves [J]. Explosion and Shock Waves, 2003, 23(2): 134–139. [17] 中华人民共和国国家标准编写组. 爆破安全规程: GB 6722—2014 [S]. 北京: 中国标准出版社, 2015. [18] 孙玉. 声阻抗梯度变化材料中声传播特性研究 [D]. 黑龙江: 哈尔滨工程大学, 2015: 91–107. DOI: 10.7666/d.D749650. [19] 杜伟东, 李海森, 陈宝伟, 等. 一种基于声散射特性的有鳔鱼特征获取方法 [J]. 应用声学, 2014, 33(6): 505–511. DOI: 10.11684/j.issn.1000-310X.2014.06.005.DU W D, LI H S, CHEN B W, et al. Features acquisition of fish with swim bladder based on acoustic scattering characteristics [J]. Journal of Applied Acoustics, 2014, 33(6): 505–511. DOI: 10.11684/j.issn.1000-310X.2014.06.005. [20] 李鑫. 鱼鳔作为新型心血管外科手术生物材料的试验研究 [D]. 上海: 第二军医大学, 2013: 1–32. DOI: 10.7666/d.Y2339973. [21] 张更申, 张庆俊, 孙国柱, 等. 应用鲤鱼鳔进行家兔硬脑膜修补术实验研究 [J]. 河北医科大学学报, 2000, 21(6): 337–340. DOI: 10.3969/j.issn.1007-3205.2000.06.006.ZHANG Q S, ZHANG Q J, SUN G Z, et al. Experimental duraplasty with carp swim-bladder in rabbits [J]. Journal of Hebei Medical University, 2000, 21(6): 337–340. DOI: 10.3969/j.issn.1007-3205.2000.06.006. [22] FINE M L, KING T L, ALI H, et al. Wall structure and material properties cause viscous damping of swimbladder sounds in the oyster toadfish Opsanus tau [J]. Proceedings of the Royal Society B: Biological Sciences, 2016, 283(1841): 20161094. DOI: 10.1098/rspb.2016.1094. [23] SOBRADILLO B, BOYRA G, MARTINEZ U, et al. Target strength and swimbladder morphology of Mueller’s pearlside (Maurolicus muelleri) [J]. Scientific Reports, 2019, 9(1): 17311. DOI: 10.1038/s41598-019-53819-6. [24] 李彬寒. 鱼鳔源抗钙化心血管生物材料的研究 [D]. 北京: 北京协和医学院, 2020: 48–59. DOI: 10.27648/d.cnki.gzxhu.2020.000519.