水下爆炸对重力坝的毁伤效应及最优爆距

黄谢平 孔祥振 陈祖煜 方秦

黄谢平, 孔祥振, 陈祖煜, 方秦. 水下爆炸对重力坝的毁伤效应及最优爆距[J]. 爆炸与冲击, 2023, 43(5): 052202. doi: 10.11883/bzycj-2022-0113
引用本文: 黄谢平, 孔祥振, 陈祖煜, 方秦. 水下爆炸对重力坝的毁伤效应及最优爆距[J]. 爆炸与冲击, 2023, 43(5): 052202. doi: 10.11883/bzycj-2022-0113
HUANG Xieping, KONG Xiangzhen, CHEN Zuyu, FANG Qin. Damage effects of underwater explosions on gravity dams and optimal standoff distances[J]. Explosion And Shock Waves, 2023, 43(5): 052202. doi: 10.11883/bzycj-2022-0113
Citation: HUANG Xieping, KONG Xiangzhen, CHEN Zuyu, FANG Qin. Damage effects of underwater explosions on gravity dams and optimal standoff distances[J]. Explosion And Shock Waves, 2023, 43(5): 052202. doi: 10.11883/bzycj-2022-0113

水下爆炸对重力坝的毁伤效应及最优爆距

doi: 10.11883/bzycj-2022-0113
基金项目: 国家自然科学基金(52178515,52078133,51879283)
详细信息
    作者简介:

    黄谢平(1996- ),男,博士研究生,huangxieping@zju.edu.cn

    通讯作者:

    孔祥振(1988- ),男,博士,副教授,ouckxz@163.com

  • 中图分类号: O383;TV312

Damage effects of underwater explosions on gravity dams and optimal standoff distances

  • 摘要: 为研究不同爆距水下爆炸对重力坝的毁伤效应,并探讨是否存在“最优爆距”,基于离心模型试验建立了炸药-库水-空气-重力坝结构的全耦合数值模型,并设计了60组数值计算工况。不同工况水深均为600 mm,炸药量为2.2 g,重力坝模型几何比尺为1/80,包含5组爆深(50~250 mm),每组爆深对应12组爆距,爆距范围为10~200 mm,相应比例爆距范围为0.077~1.54 m/kg1/3。对比分析了不同爆距水下爆炸对重力坝的毁伤程度,并定量比较了重力坝平均损伤、单元删除率、应力、应变等参数。结果表明,对于重力坝整体结构破坏,如重力坝整体弯曲导致的拉伸破坏,水下爆炸对重力坝的毁伤效应存在“最优爆距”,即随着爆距增加重力坝毁伤程度先增加后降低;与之类似,随着爆距的增加,重力坝上游坝面损伤区域的平均损伤、重力坝单元删除率、坝踵最大拉应力平均值和坝踵最大拉应变平均值先增加后降低且在40 mm爆距附近达到最大值。保持水深、炸药量和重力坝几何模型相同,5组不同爆深近水面水下爆炸对重力坝毁伤效应的“最优爆距”均在40 mm附近,表明近水面水下爆炸时爆深对“最优爆距”不存在显著影响。
  • 图  1  炸药-库水-空气-重力坝结构的全耦合数值模型及大坝尺寸

    Figure  1.  Numerical model of the fully coupled explosive-water-air-dam system and dam dimension

    图  2  数值预测的大坝破坏与离心模型试验UE-01结果对比[6-7, 29]

    Figure  2.  Comparison of dam failures obtained by numerical simulations and centrifuge test UE-01[6-7, 29]

    图  3  数值预测的大坝破坏与离心模型试验UE-02结果对比[6-7, 29]

    Figure  3.  Comparison of dam failures obtained by numerical simulations and centrifuge test UE-02[6-7, 29]

    图  4  数值预测气泡脉动过程[8]

    Figure  4.  Bubble oscillation predicted by the numerical simulation[8]

    图  5  试验、数值和理论预测气泡周期(Tb)和最大半径(Rbm[8]

    Figure  5.  Bubble period (Tb) and maximum size (Rbm) predicted by centrifuge tests, numerical simulations, and the theoretical model[8]

    图  6  爆深为50 mm时不同爆距水下爆炸下重力坝的损伤

    Figure  6.  Damage clouds of dams due to underwater explosions at different standoff distances with the detonation depth of 50 mm

    图  7  爆深为100 mm时不同爆距水下爆炸下重力坝的损伤

    Figure  7.  Damage clouds of dams due to underwater explosions at different standoff distances with the detonation depth of 100 mm

    图  8  150 mm爆深不同爆距水下爆炸下重力坝的损伤

    Figure  8.  Damage clouds of dams due to underwater explosions at different standoff distances with the detonation depth of 150 mm

    图  9  ψRφRR关系

    Figure  9.  parameters ψR and φR varies with standoff distance R

    图  10  平均损伤δ与爆距R的关系曲线

    Figure  10.  Average damage δ versus the standoff distance R

    图  11  50 mm爆深不同爆距水下爆炸下重力坝破坏图(显示侵蚀单元)

    Figure  11.  Failure patterns of dams due to underwater explosions under different standoff distances with detonation depth of 50 mm (eroded elements shown)

    图  12  重力坝单元删除率与爆距R的关系曲线

    Figure  12.  The element erosion rate of the gravity dam versus the standoff distance R

    图  13  中间坝对称轴的最大z向应力

    Figure  13.  The maximum z-stress curve along the axis of the middle dam

    图  14  中间坝对称轴坝踵处最大z向应力的平均值与爆距R的关系

    Figure  14.  Average of the maximum z-stress at the heel of the axis of the middle dam versus the standoff distance R

    图  15  左边坝对称轴的最大z向应变

    Figure  15.  Maximum z-strain curve along the axis of the left dam

    图  16  左边坝对称轴坝踵最大z方向最大应变的平均值与爆距R的关系

    Figure  16.  Average of the maximum z-strain at the heel of the axis of the left dam versus the standoff distance R

    表  1  混凝土本构模型参数

    Table  1.   Parameters required in the concrete model

    a1a2/Pa−1d1d2c1c2εfrac
    0.58760.25 × 10–30.041.536.930.015
    下载: 导出CSV

    表  2  离心模型试验方案[6-8, 29]

    Table  2.   Schemes of the centrifuge tests[68, 29]

    TestG/gW/gL/mmR/mmHw/mm
    UE-01802.210020600
    UE-02501.1100100600
    UE-03501.1300300600
    下载: 导出CSV

    表  3  上游坝面损伤面积占比θ和损伤区域的平均损伤δ

    Table  3.   The damage area ratio θ and the average damage δ of the dam upstream face

    R/mmθ δ
    L=50 mmL=100 mmL=150 mmL=200 mmL=250 mm L=50 mmL=100 mmL=150 mmL=200 mmL=250 mm
    100.81590.83080.85970.85690.84900.24510.25190.22680.23100.2172
    200.82720.83320.87180.86750.86530.25690.27330.25120.25270.2263
    300.84780.85260.86640.88310.87540.26080.27430.26420.26020.2353
    400.81950.85950.87450.88170.87450.26110.27860.26950.26430.2395
    500.83050.87930.86960.89890.87180.25400.26490.26980.25230.2362
    600.83190.84150.86750.89330.87710.26160.26120.26730.24530.2353
    700.84160.87480.87850.89360.87650.24530.25100.24940.23090.2296
    800.84180.85880.88980.86680.88310.23350.24430.23630.19960.2156
    900.84150.86640.86280.89920.88730.22380.22800.22650.21660.2104
    1000.83900.87270.86930.89140.88720.20860.22100.21450.20980.2002
    下载: 导出CSV
  • [1] WANG G H, ZHANG S R, KONG Y, et al. Comparative study of the dynamic response of concrete gravity dams subjected to underwater and air explosions [J]. Journal of Performance of Constructed Facilities, 2015, 29(4): 04014092. DOI: 10.1061/(ASCE)CF.1943-5509.0000589.
    [2] WANG G H, LU W B, YANG G D, et al. A state-of-the-art review on blast resistance and protection of high dams to blast loads [J]. International Journal of Impact Engineering, 2020, 139: 103529. DOI: 10.1016/j.ijimpeng.2020.103529.
    [3] 陈叶青, 吕林梅, 汪剑辉, 等. 爆炸冲击荷载下的大坝抗爆性能及防护研究进展 [J]. 防护工程, 2021, 43(2): 1–10. DOI: 10.3969/j.issn.1674-1854.2021.02.001.

    CHEN Y Q, LV L M, WANG J H, et al. Review of blast resistance performance and protection of dams under blast shock load [J]. Protective Engineering, 2021, 43(2): 1–10. DOI: 10.3969/j.issn.1674-1854.2021.02.001.
    [4] 陈叶青, 吕林梅, 王高辉, 等. 大坝抗爆性能评估研究进展 [J]. 土木工程学报, 2021, 54(10): 9–19. DOI: 10.15951/j.tmgcxb.2021.10.003.

    CHEN Y Q, LV L M, WANG G H, et al. Review on the blast-resistance performance evaluation of dams [J]. China Civil Engineering Journal, 2021, 54(10): 9–19. DOI: 10.15951/j.tmgcxb.2021.10.003.
    [5] VANADIT-ELLIS W, DAVIS L K. Physical modeling of concrete gravity dam vulnerability to explosions [C]//2010 International Water Side Security Conference. Carrara: IEEE, 2010: 1-11. DOI: 10.1109/WSSC.2010.5730291.
    [6] HUANG X P, HU J, ZHANG X D, et al. Bending failure of a concrete gravity dam subjected to underwater explosion [J]. Journal of Zhejiang University-Science A, 2020, 21(12): 976–991. DOI: 10.1631/jzus.A2000194.
    [7] HUANG X P, KONG X Z, HU J, et al. Failure modes of concrete gravity dam subjected to near-field underwater explosion: centrifuge test and numerical simulation [J]. Engineering Failure Analysis, 2022, 137: 106243. DOI: 10.1016/j.engfailanal.2022.106243.
    [8] HUANG X P, HU J, ZHANG X D, et al. Effect of bubble pulse on concrete gravity dam subjected to underwater explosion: centrifuge test and numerical simulation [J]. Ocean Engineering, 2022, 243: 110291. DOI: 10.1016/j.oceaneng.2021.110291.
    [9] ZHANG S R, WANG G H, WANG C, et al. Numerical simulation of failure modes of concrete gravity dams subjected to underwater explosion [J]. Engineering Failure Analysis, 2014, 36: 49–64.
    [10] 王高辉, 张社荣, 卢文波, 等. 水下爆炸冲击荷载下混凝土重力坝的破坏效应 [J]. 水利学报, 2015, 46(6): 723–731. DOI: 10.13243/j.cnki.slxb.20140908.

    WANG G H, ZHANG S R, LU W B, et al. Damage effects of concrete gravity dams subjected to underwater explosion [J]. Journal of Hydraulic Engineering, 2015, 46(6): 723–731. DOI: 10.13243/j.cnki.slxb.20140908.
    [11] LI Q, WANG G H, LU W B, et al. Influence of reservoir water levels on the protective performance of concrete gravity dams subjected to underwater explosions [J]. Journal of Structural Engineering, 2018, 144(9): 04018143.
    [12] WANG C, WEI P Y, WANG X H, et al. Blast-resistance and damage evaluation of concrete gravity dam exposed to underwater explosion: considering the initial stress field [J]. KSCE Journal of Civil Engineering, 2021, 25(8): 2922–2935. DOI: 10.1007/s12205-021-1650-0.
    [13] ZHANG Q L, HU Y G, LIU M S, et al. Role of negative pressure in structural responses of gravity dams to underwater explosion loadings: the need to consider local cavitation [J]. Engineering Failure Analysis, 2021, 122: 105270. DOI: 10.1016/j.engfailanal.2021.105270.
    [14] SHU Y Z, WANG G H, LU W B, et al. Damage characteristics and failure modes of concrete gravity dams subjected to penetration and explosion [J]. Engineering Failure Analysis, 2022, 134: 106030. DOI: 10.1016/j.engfailanal.2022.106030.
    [15] ZHU J G, CHEN Y Q, LYU L. Failure analysis for concrete gravity dam subjected to underwater explosion: a comparative study [J]. Engineering Failure Analysis, 2022, 134: 106052. DOI: 10.1016/j.engfailanal.2022.106052.
    [16] REN X D, SHAO Y. Numerical investigation on damage of concrete gravity dam during noncontact underwater explosion [J]. Journal of Performance of Constructed Facilities, 2019, 33(6): 04019066. DOI: 10.1061/(ASCE)CF.1943-5509.0001332.
    [17] 吕林梅, 陈叶青, 魏晓丽, 等. 基于毁伤面积率指标的混凝土重力坝毁伤评估方法研究 [J]. 防护工程, 2020, 42(2): 28–32. DOI: 10.3969/j.issn.1674-1854.2020.02.005.

    LV L M, CHEN Y Q, WEI X L, et al. Study of damage assessment method of concrete gravity dam based on damage-area ratio index [J]. Protective Engineering, 2020, 42(2): 28–32. DOI: 10.3969/j.issn.1674-1854.2020.02.005.
    [18] 李麒, 王高辉, 卢文波, 等. 混凝土重力坝水下爆炸毁伤快速识别方法研究 [J]. 振动与冲击, 2020, 39(24): 46–53,62. DOI: 10.13465/j.cnki.jvs.2020.24.007.

    LI Q, WANG G H, LU W B, et al. A rapid identification method for underwater explosion damage of a concrete gravity dam [J]. Journal of Vibration and Shock, 2020, 39(24): 46–53,62. DOI: 10.13465/j.cnki.jvs.2020.24.007.
    [19] WANG X H, ZHANG S R, WANG C, et al. Blast-induced damage and evaluation method of concrete gravity dam subjected to near-field underwater explosion [J]. Engineering Structures, 2020, 209: 109996. DOI: 10.1016/j.engstruct.2019.109996.
    [20] 张社荣, 王高辉, 王超, 等. 水下爆炸冲击荷载作用下混凝土重力坝的破坏模式 [J]. 爆炸与冲击, 2012, 32(5): 501–507. DOI: 10.11883/1001-1455(2012)05-0501-07.

    ZHANG S R, WANG G H, WANG C, et al. Failure mode analysis of concrete gravity dam subjected to underwater explosion [J]. Explosion and Shock Waves, 2012, 32(5): 501–507. DOI: 10.11883/1001-1455(2012)05-0501-07.
    [21] 张启灵, 李端有, 李波. 水下爆炸冲击作用下重力坝的损伤发展及破坏模式 [J]. 爆炸与冲击, 2012, 32(6): 609–615. DOI: 10.11883/1001-1455(2012)06-0609-07.

    ZHANG Q L, LI D Y, LI B. Damage propagation and failure mode of gravity dam subjected to underwater explosion [J]. Explosion and Shock Waves, 2012, 32(6): 609–615. DOI: 10.11883/1001-1455(2012)06-0609-07.
    [22] WANG G H, ZHANG S R. Damage prediction of concrete gravity dams subjected to underwater explosion shock loading [J]. Engineering Failure Analysis, 2014, 39: 72–91. DOI: 10.1016/j.engfailanal.2014.01.018.
    [23] HUANG X P, KONG X Z, HU J, et al. The influence of free water content on ballistic performances of concrete targets [J]. International Journal of Impact Engineering, 2020, 139: 103530. DOI: 10.1016/j.ijimpeng.2020.103530.
    [24] ROSSI P. A physical phenomenon which can explain the mechanical behaviour of concrete under high strain rates [J]. Materials and Structures, 1991, 24(6): 422–424. DOI: 10.1007/BF02472015.
    [25] HUANG X P, KONG X Z, CHEN Z Y, et al. Equation of state for saturated concrete: a mesoscopic study [J]. International Journal of Impact Engineering, 2020, 144: 103669. DOI: 10.1016/j.ijimpeng.2020.103669.
    [26] KONG X Z, FANG Q, CHEN L, et al. A new material model for concrete subjected to intense dynamic loadings [J]. International Journal of Impact Engineering, 2018, 120: 60–78. DOI: 10.1016/j.ijimpeng.2018.05.006.
    [27] ZHAO F Q, WEN H M. Effect of free water content on the penetration of concrete [J]. International Journal of Impact Engineering, 2018, 121: 180–190. DOI: 10.1016/j.ijimpeng.2018.06.007.
    [28] XU H, WEN H M. Semi-empirical equations for the dynamic strength enhancement of concrete-like materials [J]. International Journal of Impact Engineering, 2013, 60: 76–81. DOI: 10.1016/j.ijimpeng.2013.04.005.
    [29] 黄谢平, 孔祥振, 陈祖煜, 等. 近水面、库中、库底水下爆炸荷载作用下混凝土重力坝的破坏模式对比 [J]. 土木工程学报, 2023, 56(3): 116–128. DOI: 10.15951/j.tmgcxb.21121206.

    HUANG X P, KONG X Z, CHEN Z Y, et al. Comparison of failure modes of concrete gravity dams by underwater explosion loads near the water free surface, the middle, and the bottom of the reservoir [J]. China Civil Engineering Journal, 2023, 56(3): 116–128. DOI: 10.15951/j.tmgcxb.21121206.
    [30] GEERS T L, HUNTER K S. An integrated wave-effects model for an underwater explosion bubble [J]. The Journal of the Acoustical Society of America, 2002, 111(4): 1584–1601. DOI: 10.1121/1.1458590.
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  637
  • HTML全文浏览量:  131
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-23
  • 修回日期:  2022-05-21
  • 网络出版日期:  2022-05-27
  • 刊出日期:  2023-05-05

目录

    /

    返回文章
    返回