[1] |
李仁年, 赵振希, 李德顺, 李银然, 陈霞, 于佳鑫. 风沙对风力机翼型绕流及其气动性能的影响 [J]. 农业工程学报, 2018, 34(14): 205–211; 303. DOI: 10.11975/j.issn.1002-6819.2018.14.026.LI R N, ZHAO Z X, LI D S, et al. Effect of wind sand on flow around airfoil wind turbine and its aerodynamic performance [J]. Transactions of Chinese Society of Agricultural Engineering, 2018, 34(14): 205–211; 303. DOI: 10.11975/j.issn.1002-6819.2018.14.026.
|
[2] |
贲安庆, 窦华书. 可压缩机翼绕流的数值模拟及其稳定性分析 [J]. 浙江理工大学学报, 2015, 33(9): 675–681.BEN A Q, DOU H S. Numerical simulation of compressible flow around the airfoil and its stability analysis [J]. Jounal of Zhejiang Sci-Tech University, 2015, 33(9): 675–681.
|
[3] |
刘雄, 梁湿. 风力机翼型在复合运动下的动态失速数值分析 [J]. 工程力学, 2016, 33(12): 248–256. DOI: CNKI:SUN:GCLX.0.2016-12-030.LIU X, LIANG S. Numerical investigation on dynamic stall of wind turbine airfoil undergoing complex motion [J]. Engineering Mechanics, 2016, 33(12): 248–256. DOI: CNKI:SUN:GCLX.0.2016-12-030.
|
[4] |
KOIRALA R, NEOPANE H P, ZHU B S, et al. Effect of sediment erosion on flow around guide vanes of Francis turbine [J]. Renewable Energy, 2019, 136: 1022–1027. DOI: 10.1016/j.renene.2019.01.045.
|
[5] |
LI W Z, WANG W Q, YAN Y, et al. Effects of pitching motion profile on energy harvesting performance of a semi-active flapping foil using immersed boundary method [J]. Ocean Engineering, 2018, 163(9): 94–106. DOI: 10.1016/j.oceaneng.2018.05.055.
|
[6] |
郝栋伟, 张立翔, 王文全. 流固耦合S-型自主游动柔性鱼运动特性分析 [J]. 工程力学, 2015, 32(5): 13–18.HAO D W, ZHANG L X, WANG W Q. Swimming patterns of an S-type self-propelled flexible fish in fluid-structure interaction [J]. Engineering Mechanics, 2015, 32(5): 13–18.
|
[7] |
向锦武, 孙毅, 申童, 李道春. 扑翼空气动力学研究进展与应用 [J]. 工程力学, 2019, 36(4): 8–23.XIANG J W, SUN Y, SHEN T, et al. Research progress and application of flapping wing aerodynamics [J]. Engineering Mechanics, 2019, 36(4): 8–23.
|
[8] |
BOWERS A. Model tests showed aerodynamic instability of Tacoma narrows bridge [J]. Journal of Franklin Institute, 1941, 231(5): 470–470.
|
[9] |
颜大椿. 湍流、风工程和虎门大桥的风振 [J]. 力学与实践, 2020, 42(4): 523–525.YAN D C. Turbulence, wind engineering and wind vibration of Humen Bridge [J]. Mechanics in Engineering, 2020, 42(4): 523–525.
|
[10] |
PESKIN C S. Flow patterns around heart valves: a numerical method [J]. Journal of Computational Physics, 1972, 10: 252–271. DOI: 10.1016/0021-9991(72)90065-4.
|
[11] |
GOLDSTEIN D, HANDLER R, SIROVICH L. Modeling a no-slip flow boundary with an external force field [J]. Journal of Computational Physics, 1993, 105(2): 354–366. DOI: 10.1006/jcph.1993.1081.
|
[12] |
JAMALUDIN M J. Combined immersed boundaries/ B-spline methods for simulations of flow in complex geometries [J]. Annual Research Briefs, Center for Turbulence Research, 1997, 161(1): 317–327.
|
[13] |
FADLUN E A, VERZICCO R, ORLANDI P, et al. Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. [J]. Journal of Computational Physics, 2000, 161(1): 35–60. DOI: 10.1006/jcph.2000.6484.
|
[14] |
LE D V, KHOO B C, LIM K M. An implicit-forcing immersed boundary method for simulating viscous flows in irregular domains [J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(25): 2119–2130. DOI: 10.1016/j.cma.2007.08.008.
|
[15] |
WU J, SHU C. Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications [J]. Journal of Computational Physics, 2009, 228(6): 1963–1979. DOI: 10.1016/j.jcp.2008.11.019.
|
[16] |
王文全, 张国威, 闫妍. 模拟复杂流动的一种隐式直接力浸入边界方法 [J]. 工程力学, 2017, 34(2): 28–33; 93. DOI: 10.6052/j.issn.1000-4750.2015.07.0600.WANG W Q, ZHANG G W, YAN Y. An implicit direct force immersed boundary method for simulating complex flow [J]. Engineering Mechanics, 2017, 34(2): 28–33; 93. DOI: 10.6052/j.issn.1000-4750.2015.07.0600.
|
[17] |
Uhlmann M. An immersed boundary method with direct forcing for the simulation of particulate flows [J]. Journal of Computational Physics, 2005, 209(2): 448–476. DOI: 10.1016/j.jcp.2005.03.017.
|
[18] |
LAI M C, PESKIN C S. An immersed boundary method with formal second-order accuracy and reduced numerical viscosity [J]. Journal of Computational Physics, 2000, 160(2): 705–719. DOI: 10.1006/jcph.2000.6483.
|
[19] |
郭涛, 郝栋伟, 李明华, 等. 基于浸入边界法研究超弹性红细胞在剪切流中的运动特性 [J]. 医用生物力学, 2015, 30(3): 243–248. DOI: 10.3871/j.1004-7220.2015.03.243.GUO T, HAO D W, LI M H, et al. Motion characteristics on hyper-elastic red cells in shear flow based on immersed boundary meth [J]. Journal of Medical Biomechanics., 2015, 30(3): 243–248. DOI: 10.3871/j.1004-7220.2015.03.243.
|
[20] |
SOTIROPOULOS F, YANG X. Immersed boundary methods for simulating fluid-structure interaction [J]. Progress in Aerospace Sciences, 2014, 65(5): 1–21. DOI: 10.1016/.j.paerosci.2013.09.003.DOI:.
|
[21] |
MOHAMMADI M H, SOTIROPOULOS F, BRINKERHOFF J. Moving least squares reconstruction for sharp interface immersed boundary methods [J]. International Journal for Numerical Methods in Fluids, 2019, 90(20): 57–80. DOI: 10.1002/fld.4711.
|
[22] |
郭涛,张纹惠,王文全,等. 基于IBM法的低雷诺数下涡激振动高质量比效应的研究 [J]. 工程力学, 2022, 39(3): 222–232. DOI: 10.6052/j.issn.1000-4750.2021.07.0566.GUO T, ZHANG W H, WANG W Q, et al. Effects of high mass and damping ration on VIV of a circular cylinder with low Reynolds number based on IBM [J]. Engineering Mechanics, 2022, 39(3): 222–232. DOI: 10.6052/j.issn.1000-4750.2021.07.0566.
|
[23] |
XIE F T, QU Y G, ISLAM M A, et al. A sharp-interface Cartesian grid method for time-domain acoustic scattering from complex geometries [J]. Computers and Fluids, 2020, 202: 104498. DOI: 10.1016/j.compfluid.2020.104498.
|
[24] |
YOUSEFZADEH M, BATTIATO I. High order ghost-cell immersed boundary method for generalized boundary conditions [J]. International Journal of Heat and Mass Transfer, 2019, 137(7): 585–598. DOI: 10.1016/j.ijheatmasstransfer.2019.03.061.
|
[25] |
BRADY P T, LIVESCU D. Foundations for high-order, conservative cut-cell methods: stable discretizations on degenerate meshes [J]. Journal of Computational Physics, 2021, 426: 109794. DOI: 10.1016/j.jcp.2020.109794.
|
[26] |
MONASSE L, DARU V, MARIOTTI C, et al. A conservative coupling algorithm between a compressible flow and a rigid body using an embedded boundary method [J]. Journal of Computational Physics, 2012, 231(7): 2977–2994. DOI: 10.1016/j.jcp.2012.01.002.
|
[27] |
张和涛, 宁建国, 许香照, 等. 一种强耦合预估-校正浸入边界法 [J]. 爆炸与冲击, 2021, 41(9): 094201. DOI: 10.11883/bzycj-2021-0129.ZHANG H T, NING J G, XU X Z, et al. A strong coupling prediction-correction immersed boundary method [J]. Explosion and Shock Waves, 2021, 41(9): 094201. DOI: 10.11883/bzycj-2021-0129.
|
[28] |
胡建伟, 汤怀民. 微分方程数值方法[M]. 2 版. 北京: 科学出版社, 2007: 79–105.
|
[29] |
BALARAS E. Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations [J]. Computers & Fluids, 2004, 33(3): 375–404. DOI: 10.1016/S0045-7930(03)00058-6.
|
[30] |
SCHLICHING H. Boundary-layer theory [M]. New York: Mcgraw-Hill Book Company, 1979: 19–21.
|