空气自由场爆炸冲击波数值建模及应用

张云峰 陈博 魏欣 李浩 仵可 随亚光 方龙

张云峰, 陈博, 魏欣, 李浩, 仵可, 随亚光, 方龙. 空气自由场爆炸冲击波数值建模及应用[J]. 爆炸与冲击, 2023, 43(11): 114202. doi: 10.11883/bzycj-2023-0004
引用本文: 张云峰, 陈博, 魏欣, 李浩, 仵可, 随亚光, 方龙. 空气自由场爆炸冲击波数值建模及应用[J]. 爆炸与冲击, 2023, 43(11): 114202. doi: 10.11883/bzycj-2023-0004
ZHANG Yunfeng, CHEN Bo, WEI Xin, LI Hao, WU Ke, SUI Yaguang, FANG Long. Numerical modeling and application of shock wave of free-field air explosion[J]. Explosion And Shock Waves, 2023, 43(11): 114202. doi: 10.11883/bzycj-2023-0004
Citation: ZHANG Yunfeng, CHEN Bo, WEI Xin, LI Hao, WU Ke, SUI Yaguang, FANG Long. Numerical modeling and application of shock wave of free-field air explosion[J]. Explosion And Shock Waves, 2023, 43(11): 114202. doi: 10.11883/bzycj-2023-0004

空气自由场爆炸冲击波数值建模及应用

doi: 10.11883/bzycj-2023-0004
详细信息
    作者简介:

    张云峰(1990- ),男,博士,助理研究员, zhangyunfeng@nint.ac.cn

    通讯作者:

    方 龙(1988- ),男,博士,助理研究员, fanglong@nint.ac.cn

  • 中图分类号: O382

Numerical modeling and application of shock wave of free-field air explosion

  • 摘要: 为建立描述任意时刻、距离下空气自由场爆炸波冲击波压力、密度、粒子速度的经验公式,支撑复杂场景下冲击波载荷的快速计算,采用一维精细数值模拟的方法计算了不同比例距离下的压力、密度、粒子速度时程,并利用曲线拟合方法得到了正相超压峰值等22个冲击波参数与比例距离关系的经验公式,采用改进修正Friedlander方程建立了冲击波压力、密度、粒子速度随时间变化的关系式;利用爆炸冲击波地面反射和建筑后绕射两个典型工况,阐释了提出模型的应用场景,并与试验、数值模拟结果对比。结果表明:压力、密度、粒子速度随比例距离、时间变化的经验关系与数值模拟结果基本吻合;爆炸冲击波地面反射和建筑后绕射两个典型工况下,理论计算与数值模拟的压力云图基本吻合,在相同硬件条件下,理论计算耗时仅为千万级网格数值模拟的5%左右,在计算速度上有明显的优越性。
  • 图  1  不同网格数量下的压力时程数值模拟结果

    Figure  1.  Numerical result of pressure changing with different grid quantity

    图  2  不同网格数量下的密度时程数值模拟结果

    Figure  2.  Numerical result of density with different grid quantity

    图  3  不同网格数量下的粒子速度时程数值模拟结果

    Figure  3.  Numerical result of particle velocity with different grid quantity

    图  4  数值模拟结果与经验曲线对比

    Figure  4.  Comparison between simulated results and empirical curves

    图  5  超压峰值与比例距离关系

    Figure  5.  Relationship between peak pressure and scaled distance

    图  6  冲量与比例距离关系

    Figure  6.  Relationship between impulse and scaled distance

    图  7  时间参数比例距离关系

    Figure  7.  Relationship between time parameters and scaled distance

    图  8  中止密度和超密度峰值与比例距离关系

    Figure  8.  Relationship of cut suspend density and peak density with scaled distance

    图  9  密度积分与比例距离的关系

    Figure  9.  Relationship between density integral and scaled distance

    图  10  时间参数与比例距离关系

    Figure  10.  Relationship between time parameters and scaled distance

    图  11  粒子速度峰值与比例距离关系

    Figure  11.  Relationship between peak particle velocity and scaled distance

    图  12  速度积分与比例距离关系

    Figure  12.  Relationship between velocity integral and scaled distance

    图  13  时间参数比例距离关系

    Figure  13.  Relationship between time parameters and scaled distance

    图  14  R=0.17 m/kg1/3处冲击波基本参数理论及数值模拟时程

    Figure  14.  Simulated and theoretical basic shock wave parameter histories at R=0.17 m/kg1/3

    图  15  冲击波基本参数理论及数值模拟时程曲线

    Figure  15.  Simulated and theoretical basic parameter history of shock waves

    图  16  空爆地面反射实验布置

    Figure  16.  Experimental arrangement of ground reflection of air explosion

    图  17  冲击波结构示意

    Figure  17.  Schematic of shock wave structure

    图  18  理论与数值计算得到的压力云图

    Figure  18.  Theoretical and simulated results of pressure contour

    图  19  不同测点超压、冲量时程

    Figure  19.  Overpressure and impulse histories of different gauges

    图  20  爆炸冲击波建筑后绕射实验布置图

    Figure  20.  Experimental arrangement of explosion shock wave diffraction behind the building corner

    图  21  冲击波绕射理论计算空间划分示意图

    Figure  21.  Schematic diagram of space division of shock wave diffraction theoretical calculation

    图  22  z=1.35 m平面理论与数值计算结果的压力分布云图

    Figure  22.  Theoretical and simulated results of pressure contours on the z=1.35 m plane

    图  23  不同测点超压、冲量时程曲线

    Figure  23.  Overpressure and impulse histories of different gauges

    表  1  TNT的JWL物态方程参数[28]

    Table  1.   JWL EOS parameters of TNT[28]

    密度/(kg·m−1/3)E0/GPaA/GPaB/GPaR1R2ω
    16307.0373.83.754.150.90.35
    下载: 导出CSV

    表  2  各测点的超压峰值(Δ$ p $+)和冲量极值($i $+)理论结果与数值模拟、试验结果对比

    Table  2.   Comparison of peak overpressure (Δp+) and maximum impulse (i+) between theoretical values and experimental results, simulation results of each gauges

    测点 δ1p+)/% δ2p+)/% δ3p+)/% δsp+)/% δ1(i+)/% δ1(i+)/% δ1(i+)/% δ1(i+)/%
    T1 23.5 19.5 19.3 8.6 2.4 39.6 31.7 0.8
    T3 30.0 8.6 21.8 2.1
    T4 23.3 6.9 23.1 4.8
    T5 0.4 7.8 38.4 6.0
     注:δk为理论结果相对于第k次(k=1、2、3)试验结果的误差,δs为理论结果相对于模拟结果的误差。
    下载: 导出CSV
  • [1] BANGASH M Y H, BANGASH T. Explosion-resistant buildings, design, analysis, and case studies [M]. Berlin: Springer, 2006. DOI: 10.1007/3-540-31289-7.
    [2] CORMIE D, MAYS G, SMITH P. Blast effects on buildings [M]. 3rd ed. London: ICE Publishing, 2020.
    [3] ZHOU Q, HE H G, LIU S F, et al. Blast resistance evaluation of urban utility tunnel reinforced with BFRP bars [J]. Defence Technology, 2021, 17(2): 512–530. DOI: 10.1016/j.dt.2020.03.015.
    [4] HUANG X, BAO H R, HAO Y F, et al. Damage assessment of two-way RC slab subjected to blast load using mode approximation approach [J]. International Journal of Structural Stability and Dynamics, 2017, 17(1): 1750013. DOI: 10.1142/S0219455417500134.
    [5] LANGENDERFER M, WILLIAMS K, DOUGLAS A, et al. An evaluation of measured and predicted air blast parameters from partially confined blast waves [J]. Shock Waves, 2021, 31(2): 175–192. DOI: 10.1007/s00193-021-00993-0.
    [6] TAN C M M. Rapid estimation of building damage by conventional weapons [M]. US: Naval Postgraduate School, 2014.
    [7] BOGOSIAN D, FERRITTO J, SHI Y J. Measuring uncertainty and conservatism in simplified blast models [C]// Proceedings of the 30th Explosives Safety Seminar. Atlanta, Georgia, US, 2002.
    [8] 马涛. 空气中爆炸波快速算法研究 [D]. 长沙: 国防科学技术大学, 2014.

    MA T. The study for fast computation of blast wave in air [D]. Changsha: National University of Defense Technology, 2014.
    [9] NEEDHAM C E. Blast waves [M]. 2nd ed. Cham: Springer, 2018. DOI: 10.1007/978-3-319-65382-2.
    [10] US Army Corps of Engineers. Structures to resist the effects of accidental explosions: UFC 3-340-02 [S]. USA: Department of Defense of USA, 2008.
    [11] DUSENBERRY D, SCHMIDT J, HOBELMANN P, et al. Blast protection of buildings: ASCE/SEI 59-11 [S]. USA: American Society of Civil Engineers, 2011. DOI: 10.1061/9780784411889.
    [12] ABRAHAM J, STEWART C. Shock 2.0 theory manual: TR-NAVFAC ESC-CI-1101 [M]. 2011.
    [13] 杨亚东, 李向东, 王晓鸣. 长方体密闭结构内爆炸冲击波传播与叠加分析模型 [J]. 兵工学报, 2016, 37(8): 1449–1455. DOI: 10.3969/j.issn.1000-1093.2016.08.016.

    YANG Y D, LI X D, WANG X M. An analytical model for propagation and superposition of internal explosion shockwaves in closed cuboid structure [J]. Acta Armamentarii, 2016, 37(8): 1449–1455. DOI: 10.3969/j.issn.1000-1093.2016.08.016.
    [14] Numerics Software. Fl-blast v1.1 theory manual [M]. Germany: Numerics Software, 2017.
    [15] FRANK S, FRANK R, HURLEY J. Fast-running model for arbitrary room airblast [C]// Proceedings of the International Symposium for the Interaction of the Effects of Munitions on Structures (ISIEMS 12.1). Orlando, FL, 2007.
    [16] CAMPIDELLI M, VIOLA E. An analytical–numerical method to analyze single degree of freedom models under airblast loading [J]. Journal of Sound and Vibration, 2007, 302(1/2): 260–286. DOI: 10.1016/j.jsv.2006.11.024.
    [17] 张玉涛, 田玄鑫, 孙贝生, 等. 爆炸冲击波载荷特征对冲击响应谱影响规律研究 [J]. 舰船科学技术, 2019, 41(6): 48–52. DOI: 10.3404/j.issn.1672-7469.2019.06.010.

    ZHANG Y T, TIAN X X, SUN B S, et al. Research on the influence of the wave spectrum characteristics on the shock response of explosion shock load [J]. Ship Science and Technology, 2019, 41(6): 48–52. DOI: 10.3404/j.issn.1672-7469.2019.06.010.
    [18] XIAO W F, ANDRAE M, GEBBEKEN N. Air blast TNT equivalence factors of high explosive material PETN for bare charges [J]. Journal of Hazardous Materials, 2019, 377: 152–162. DOI: 10.1016/j.jhazmat.2019.05.078.
    [19] XIAO W F, ANDRAE M, GEBBEKEN N. Air blast TNT equivalence concept for blast-resistant design [J]. International Journal of Mechanical Sciences, 2020, 185: 105871. DOI: 10.1016/j.ijmecsci.2020.105871.
    [20] KINNEY G F, GRAHAM K J. Explosive shocks in air [M]. 2nd ed. Berlin: Springer, 1985. DOI: 10.1007/978-3-642-86682-1.
    [21] BAKER W E. 空中爆炸 [M]. 江科, 译. 北京: 原子能出版社, 1982.

    BAKER W E. Explosions in air [M]. JIANG K, trans. Beijing: Atomic Energy Press, 1982.
    [22] 程祥, 杨明, 郭亚丽, 等. 修正的Friedlander方程指数衰减因子 [J]. 爆炸与冲击, 2009, 29(4): 425–428. DOI: 10.11883/1001-1455(2009)04-0425-04.

    CHENG X, YANG M, GUO Y L, et al. Analysis on an exponential attenuation factor in the modified Friedlander equation by overpressure tests [J]. Explosion and Shock Waves, 2009, 29(4): 425–428. DOI: 10.11883/1001-1455(2009)04-0425-04.
    [23] 杨科之, 刘盛. 空气冲击波传播和衰减研究进展 [J]. 防护工程, 2020, 42(3): 1–10. DOI: 10.3969/j.issn.1674-1854.2020.03.001.

    YANG K Z, LIU S. Progress of research on propagation and attenuation of air blast [J]. Protective Engineering, 2020, 42(3): 1–10. DOI: 10.3969/j.issn.1674-1854.2020.03.001.
    [24] RANDERS-PEHRSON G, BANNISTER K A. Airblast loading model for DYNA2D and DYNA3D: ARL-TR-1310 [R]. USA: Army Research Laboratory, 1997.
    [25] XUE Z Q, LI S P, XIN C L, et al. Modeling of the whole process of shock wave overpressure of free-field air explosion [J]. Defence Technology, 2019, 15(5): 815–820. DOI: 10.1016/j.dt.2019.04.014.
    [26] DEWEY J M. Addendum: an interface to provide the physical properties of blast waves generated by propane explosions [J]. Shock Waves, 2020, 30(4): 439–441. DOI: 10.1007/s00193-020-00945-0.
    [27] DEWEY J M. An interface to provide the physical properties of the blast wave from a free-field TNT explosion [J]. Shock Waves, 2022, 32(4): 383–390. DOI: 10.1007/s00193-022-01076-4.
    [28] DOBRATZ B M, CRAWFORD P C. LLNL explosives handbook: properties of chemical explosives and explosive simulants: UCRL-52997-Chg. 2 [R]. Livermore: Lawrence Livermore National Laboratory, 1985.
    [29] SHERKAR P, SHIN J, WHITTAKER A, et al. Influence of charge shape and point of detonation on blast-resistant design [J]. Journal of Structural Engineering, 2016, 142(2): 04015109. DOI: 10.1061/(ASCE)ST.1943-541X.0001371.
    [30] XIAO W F, ANDRAE M, GEBBEKEN N. Effect of charge shape and initiation configuration of explosive cylinders detonating in free air on blast-resistant design [J]. Journal of Structural Engineering, 2020, 146(8): 04020146. DOI: 10.1061/(ASCE)ST.1943-541X.0002694.
    [31] BRODE H L. A calculation of the blast wave from a spherical charge of TNT: AD 144302 [R]. US Air Force, 1957.
    [32] LUTSKY M. The flow behind a spherical detonation in TNT using the Landau-Stanyukovich equation of state for detonation products: NOL-TR 64-40 [R]. White Oak: U. S. Naval Ordnance Laboratory, 1965.
    [33] 杜红棉, 曹学友, 何志文, 等. 近地爆炸空中和地面冲击波特性分析和验证 [J]. 弹箭与制导学报, 2014, 34(4): 65–68. DOI: 10.3969/j.issn.1637-9728.2014.04.018.

    DU H M, CAO X Y, HE Z W, et al. Analysisand validation for characteristics of air and ground shock wave near field explosion [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2014, 34(4): 65–68. DOI: 10.3969/j.issn.1637-9728.2014.04.018.
    [34] GAJEWSKI T, SIELICKI P W. Experimental study of blast loading behind a building corner [J]. Shock Waves, 2020, 30(4): 385–394. DOI: 10.1007/s00193-020-00936-1.
    [35] 贾雷明, 王澍霏, 田宙. 爆炸冲击波反射流场的理论计算方法 [J]. 爆炸与冲击, 2019, 39(6): 064201. DOI: 10.11883/bzycj-2018-0167.

    JIA L M, WANG S F, TIAN Z. A theoretical method for the calculation of flow field behind blast reflected waves [J]. Explosion and Shock Waves, 2019, 39(6): 064201. DOI: 10.11883/bzycj-2018-0167.
    [36] XIAO W, ANDRAE M, GEBBEKEN N. Development of a new empirical formula for prediction of triple point path [J]. Shock Waves, 2020, 30(6): 677–686. DOI: 10.1007/s00193-020-00968-7.
    [37] NEEDHAM C E. Blast loads and propagation around and over a building [M]//HANNEMANN K, SEILER F. Shock Waves. Berlin: Springer, 2009. DOI: 10.1007/978-3-540-85181-3.
  • 加载中
图(23) / 表(2)
计量
  • 文章访问数:  222
  • HTML全文浏览量:  98
  • PDF下载量:  157
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-04
  • 修回日期:  2023-05-18
  • 网络出版日期:  2023-10-11
  • 刊出日期:  2023-11-17

目录

    /

    返回文章
    返回