火灾下双钢板-混凝土组合墙抗冲击机理分析与挠度预测

杨耀堂 王蕊 赵晖 侯川川

杨耀堂, 王蕊, 赵晖, 侯川川. 火灾下双钢板-混凝土组合墙抗冲击机理分析与挠度预测[J]. 爆炸与冲击, 2024, 44(1): 012101. doi: 10.11883/bzycj-2023-0052
引用本文: 杨耀堂, 王蕊, 赵晖, 侯川川. 火灾下双钢板-混凝土组合墙抗冲击机理分析与挠度预测[J]. 爆炸与冲击, 2024, 44(1): 012101. doi: 10.11883/bzycj-2023-0052
YANG Yaotang, WANG Rui, ZHAO Hui, HOU Chuanchuan. Impact resistence mechanism and deflection prediction of steel-concrete composite wall under fire exposure[J]. Explosion And Shock Waves, 2024, 44(1): 012101. doi: 10.11883/bzycj-2023-0052
Citation: YANG Yaotang, WANG Rui, ZHAO Hui, HOU Chuanchuan. Impact resistence mechanism and deflection prediction of steel-concrete composite wall under fire exposure[J]. Explosion And Shock Waves, 2024, 44(1): 012101. doi: 10.11883/bzycj-2023-0052

火灾下双钢板-混凝土组合墙抗冲击机理分析与挠度预测

doi: 10.11883/bzycj-2023-0052
基金项目: 国家自然科学基金(52108162);山西省留学回国人员科技活动择优资助项目(20210010)
详细信息
    作者简介:

    杨耀堂(1998- ),男,硕士研究生,yangyaotang1105@163.com

    通讯作者:

    赵 晖(1988- ),男,博士,副教授,zhaohui01@tyut.edu.cn

  • 中图分类号: O347.3

Impact resistence mechanism and deflection prediction of steel-concrete composite wall under fire exposure

  • 摘要: 双钢板-混凝土组合墙(steel-concrete composite wall, SC wall)常用于核电站、超高层等重要结构的承重构件,其在偶然荷载作用下的力学性能也是其推广应用的关键指标。为此,针对火灾下SC墙的抗冲击性能进行研究并给出相关设计建议。首先建立了SC墙在火灾与冲击耦合作用下的有限元模型,在验证模型可靠性基础上,开展了火灾下SC墙抗冲击机理的分析;然后研究了轴力、受火时间、材料强度、冲击能量与抗剪连接件形式等参数对SC墙在火灾下抗冲击性能的影响规律;最后给出了该类构件在耦合工况下跨中峰值挠度的预测公式。结果表明:随着受火时间的增加,SC墙受冲击变形模式由局部冲切逐渐转变为整体弯曲破坏;火灾下,混凝土为SC墙受冲击的主要耗能部件;混凝土强度、轴力与抗剪连接件形式对SC墙在高温下的抗冲击性能影响显著,钢板强度的影响则较小;建议的公式可较合理地预测火灾下SC墙受冲击后的跨中峰值挠度。
  • 图  1  SC墙的构造示意图

    Figure  1.  Schematic diagram of SC wall

    图  2  温度-冲击耦合分析过程

    Figure  2.  Procedure of coupled temperature-impact analysis

    图  3  SC墙的有限元模型

    Figure  3.  FE model of the SC walls

    图  4  试验值[3, 17-18]与模拟值对比

    Figure  4.  Comparisons between tests[3, 17-18] and FE results

    图  5  构件破坏模态对比(H60[3])

    Figure  5.  Comparison of failure modes of specimens (H60[3])

    图  6  温度场分布

    Figure  6.  Temperature distribution

    图  7  温度时程曲线

    Figure  7.  Temperature-time curves

    图  8  典型构件火灾下冲击时程曲线

    Figure  8.  Impact force and displacement history curves

    图  9  混凝土等效塑性应变发展

    Figure  9.  Development of equivalent plastic strain in concrete

    图  10  构件冲击力-落锤位移曲线

    Figure  10.  Impact force-hammer displacement curves

    图  11  能量-落锤位移曲线

    Figure  11.  Energy-hammer displacement curves

    图  12  混凝土最大主塑性应变

    Figure  12.  Maximum principal plastic strain of concrete core

    图  13  顶部钢板的残余变形

    Figure  13.  Residual deformation of top steel plate

    图  14  接触应力时程曲线

    Figure  14.  Contact stress-time curves

    图  15  各部件塑性耗能占比

    Figure  15.  Energy dissipation proportions of each component

    图  16  受火时间的影响

    Figure  16.  Effect of fire duration

    图  17  冲击质量的影响

    Figure  17.  Effects of impact mass

    图  18  冲击速度的影响

    Figure  18.  Effects of impact velocity

    图  19  不同冲击能量下的W-y曲线

    Figure  19.  W-y curves with different impact energies

    图  20  轴压比的影响

    Figure  20.  Effects of axial load ratio

    图  21  材料强度的影响

    Figure  21.  Effects of material strength

    图  22  剪力件形式的影响

    Figure  22.  Effects of shear connector types

    图  23  截面弯矩计算示意图

    Figure  23.  Calculation diagram of cross-section bending moment

    图  24  模拟与计算的截面极限弯矩对比

    Figure  24.  Comparison of simulated cross-sectional ultimate bending moment with predicted results

    图  25  等效塑性铰模型示意图

    Figure  25.  Diagram of equivalent plastic hinge model

    图  26  模拟与计算的跨中峰值挠度对比

    Figure  26.  Comparison of simulated and predicted ωpeak

    表  1  SC墙的详细参数

    Table  1.   Detailed parameters of SC walls

    研究内容 剪力件形式 t/min n m0/kg v0/(m·s−1) fcu/MPa fy/MPa
    机理分析栓钉+对拉钢筋0/30/60/900.1240640355
    受火时间栓钉+对拉钢筋0/15/30/45/60/75/900.1240640/50355/390/420
    轴压比栓钉+对拉钢筋0/30/60/900/0.1/0.2/0.3240640355
    材料强度栓钉+对拉钢筋0/30/60/900.1240630/40/50355/390/420
    剪力件形式栓钉+对拉钢筋/对拉钢筋0/30/60/900.1240640355
    冲击能量 栓钉+对拉钢筋 0/30/60/90 0.1 180/240/360 8/6/4 40 355
    下载: 导出CSV

    表  2  试验与模拟结果比值

    Table  2.   Ratio of test to numerical results

    构件编号 冲击力/kN 试验值/模拟值 峰值挠度/mm 试验值/模拟值
    试验 模拟 试验 模拟
    H30 250 240 1.04 32.0 32.5 0.98
    H60 296 298 0.99 47.6 51.0 0.93
    C2650 896 943 0.95
    C4652 998 898 1.11
    平均值 1.02 0.96
    标准差 0.06 0.03
    下载: 导出CSV
  • [1] 李小军, 李晓虎. 核电工程双钢板混凝土组合剪力墙面内受弯性能研究 [J]. 工程力学, 2017, 34(9): 43–53. DOI: 10.6052/j.issn.1000-4750.2016.08.0665.

    LI X J, LI X H. Study on in-plane flexural behavior of double steel plates and concrete infill composite shear walls for nuclear engineering [J]. Engineering Mechanics, 2017, 34(9): 43–53. DOI: 10.6052/j.issn.1000-4750.2016.08.0665.
    [2] 赵唯以, 王琳, 郭全全, 等. 双钢板混凝土组合结构抗冲击性能的研究进展 [J]. 钢结构(中英文), 2020, 35(3): 26–36. DOI: 10.13206/j.gjgS19121501.

    ZHAO W Y, WANG L, GUO Q Q, et al. Research advances of impact resistance of steel-concrete composite structures [J]. Steel Construction (Chinese & English), 2020, 35(3): 26–36. DOI: 10.13206/j.gjgS19121501.
    [3] 赵唯以, 郭全全. 低速冲击下双钢板混凝土组合墙的力学性能研究 [J]. 土木工程学报, 2018, 51(11): 88–94. DOI: 10.15951/j.tmgcxb.2018.11.007.

    ZHAO W Y, GUO Q Q. Study on behavior of double-skin steel-concrete composite walls subjected to low-velocity impact [J]. China Civil Engineering Journal, 2018, 51(11): 88–94. DOI: 10.15951/j.tmgcxb.2018.11.007.
    [4] 严加宝, 刘青峰, 张令心, 等. 设槽钢连接件的钢-混凝土-钢组合剪力墙抗冲击性能研究 [J]. 建筑结构学报, 2020, 41(S2): 270–279. DOI: 10.14006/j.jzjgxb.2020.S2.0030.

    YAN J B, LIU Q F, ZHANG L X, et al. Study on impact behavior of steel-concrete-steel sandwich shear wall with channel connectors [J]. Journal of Building Structures, 2020, 41(S2): 270–279. DOI: 10.14006/j.jzjgxb.2020.S2.0030.
    [5] 朱立猛, 高晓飞, 张春巍. 无焊缝全螺栓连接双钢板混凝土组合剪力墙平面外抗冲击性能有限元分析 [J]. 振动与冲击, 2021, 40(9): 166–174. DOI: 10.13465/j.cnki.jvs.2021.09.022.

    ZHU L M, GAO X F, ZHANG C W. Finite element analysis for out of plane anti-impact performance of unwelded steel plate-concrete-steel plate composite shear wall with all bolted joints [J]. Journal of Vibration and Shock, 2021, 40(9): 166–174. DOI: 10.13465/j.cnki.jvs.2021.09.022.
    [6] WEI F, FANG C, WU B. Fire resistance of concrete-filled steel plate composite (CFSPC) walls [J]. Fire Safety Journal, 2017, 88: 26–39. DOI: 10.1016/j.firesaf.2016.12.008.
    [7] 钱凯, 谭鑫宇, 李治, 等. 高温下钢筋混凝土板抗冲击性能及其影响因素 [J]. 工程力学, 2023, 40(1): 132–143, 154. DOI: 10.6052/j.issn.1000-4750.2021.08.0594.

    QIAN K, TAN X Y, LI Z, et al. Impact performance and the influence factors of reinforced concrete slabs under high temperatures [J]. Engineering Mechanics, 2023, 40(1): 132–143, 154. DOI: 10.6052/j.issn.1000-4750.2021.08.0594.
    [8] JIN L, BAI J J, ZHANG R B, et al. Effect of elevated temperature on the low-velocity impact performances of reinforced concrete slabs [J]. International Journal of Impact Engineering, 2021, 149: 103797. DOI: 10.1016/j.ijimpeng.2020.103797.
    [9] LIE T T, KODUR V K R. Fire resistance of steel columns filled with bar-reinforced concrete [J]. Journal of Structural Engineering, 1996, 122(1): 30–36. DOI: 10.1061/(ASCE)0733-9445(1996)122:1(30).
    [10] NARAYANAN R S. EN 1993-1-2: 2005 design of steel structures-part 1-2: general rules-structural fire design [S]. Britain: British Standard Institution, 2005.
    [11] CHEN L, FANG Q, JIANG X Q, et al. Combined effects of high temperature and high strain rate on normal weight concrete [J]. International Journal of Impact Engineering, 2015, 86: 40–56. DOI: 10.1016/j.ijimpeng.2015.07.002.
    [12] AL-THAIRY H, WANG Y C. A numerical study of the behaviour and failure modes of axially compressed steel columns subjected to transverse impact [J]. International Journal of Impact Engineering, 2011, 38(8/9): 732–744. DOI: 10.1016/j.ijimpeng.2011.03.005.
    [13] 李国强, 陈凯, 蒋首超, 等. 高温下Q345钢的材料性能试验研究 [J]. 建筑结构, 2001, 31(1): 53–55. DOI: 10.19701/j.jzjg.2001.01.019.

    LI G Q, CHEN K, JIANG S C, et al. Experimental studies on the high-temperature material properties of Q345 steel [J]. Building Structure, 2001, 31(1): 53–55. DOI: 10.19701/j.jzjg.2001.01.019.
    [14] CHEN H, LIEW J Y. Explosion and fire analysis of steel frames using mixed element approach [J]. Journal of Engineering Mechanics, 2005, 131(6): 606–616. DOI: 10.1061/(ASCE)0733-9399(2005)131:6(606).
    [15] 李国强. 钢结构及钢-混凝土组合结构抗火设计 [M]. 北京: 中国建筑工业出版社, 2006.

    LI G Q. Fire resistance design of steel structure and steel-concrete composite structure [M]. Beijing: China Architecture & Building Press, 2006.
    [16] 王泽芳. 双钢板-超高性能混凝土组合板冲切性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    WANG Z F. Punching shear performance of steel-ultra-high performance concrete-steel sandwich slabs [D]. Harbin: Harbin Institute of Technology, 2019.
    [17] 韦芳芳, 杜金娥, 胡雪峰, 等. 单面受火双钢板-混凝土组合剪力墙的耐火性能试验研究 [J]. 东南大学学报(自然科学版), 2016, 46(3): 518–522. DOI: 10.3969/j.issn.1001-0505.2016.03.011.

    WEI F F, DU J E, HU X F, et al. Experimental research on fire performance of concrete filled double-steel-plate composite wall exposed to one-side fire [J]. Journal of Southeast University (Natural Science Edition), 2016, 46(3): 518–522. DOI: 10.3969/j.issn.1001-0505.2016.03.011.
    [18] 霍静思, 任晓虎, 肖岩. 标准火灾作用下钢管混凝土短柱落锤动态冲击试验研究 [J]. 土木工程学报, 2012, 45(4): 9–20. DOI: 10.15951/j.tmgcxb.2012.04.009.

    HUO J S, REN X H, XIAO Y. Impact behavior of concrete-filled steel tubular stub columns under ISO-834 standard fire [J]. China Civil Engineering Journal, 2012, 45(4): 9–20. DOI: 10.15951/j.tmgcxb.2012.04.009.
    [19] 瞿海雁, 李国强, 孙建运, 等. 侧向冲击作用下钢管混凝土构件的简化分析模型 [J]. 同济大学学报(自然科学版), 2011, 39(1): 35–41. DOI: 10.3969/j.issn.0253-374x.2011.01.007.

    QU H Y, LI G Q, SUN J Y, et al. Simplified analysis model of circular concrete-filled steel tube specimen under lateral impact [J]. Journal of Tongji University (Natural Science), 2011, 39(1): 35–41. DOI: 10.3969/j.issn.0253-374x.2011.01.007.
    [20] JI S H, WANG W D, XIAN W. Lateral impact behaviour of square CFST columns under fire condition [J]. Journal of Constructional Steel Research, 2022, 196: 107367. DOI: 10.1016/j.jcsr.2022.107367.
    [21] 赵唯以, 高泽鹏, 王琳, 等. 集中荷载作用下四边简支双钢板混凝土组合板的力学性能研究 [J]. 工程力学, 2022, 39(3): 158–170, 192. DOI: 10.6052/j.issn.1000-4750.2021.01.0077.

    ZHAO W Y, GAO Z P, WANG L, et al. Mechanical performance of two-way simply supported steel-plate composite slabs under concentrated load [J]. Engineering Mechanics, 2022, 39(3): 158–170, 192. DOI: 10.6052/j.issn.1000-4750.2021.01.0077.
  • 加载中
图(26) / 表(2)
计量
  • 文章访问数:  178
  • HTML全文浏览量:  65
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-21
  • 修回日期:  2023-09-06
  • 网络出版日期:  2023-11-07
  • 刊出日期:  2024-01-11

目录

    /

    返回文章
    返回