负压环境对乳化炸药爆炸温度场和有害效应的影响

李子涵 程扬帆 王浩 朱守军 沈兆武

李子涵, 程扬帆, 王浩, 朱守军, 沈兆武. 负压环境对乳化炸药爆炸温度场和有害效应的影响[J]. 爆炸与冲击, 2023, 43(8): 082301. doi: 10.11883/bzycj-2023-0106
引用本文: 李子涵, 程扬帆, 王浩, 朱守军, 沈兆武. 负压环境对乳化炸药爆炸温度场和有害效应的影响[J]. 爆炸与冲击, 2023, 43(8): 082301. doi: 10.11883/bzycj-2023-0106
LI Zihan, CHENG Yangfan, WANG Hao, ZHU Shoujun, SHEN Zhaowu. Influences of negative pressure conditions on the explosion temperature field and harmful effects of emulsion explosive[J]. Explosion And Shock Waves, 2023, 43(8): 082301. doi: 10.11883/bzycj-2023-0106
Citation: LI Zihan, CHENG Yangfan, WANG Hao, ZHU Shoujun, SHEN Zhaowu. Influences of negative pressure conditions on the explosion temperature field and harmful effects of emulsion explosive[J]. Explosion And Shock Waves, 2023, 43(8): 082301. doi: 10.11883/bzycj-2023-0106

负压环境对乳化炸药爆炸温度场和有害效应的影响

doi: 10.11883/bzycj-2023-0106
基金项目: 国家自然科学基金(11972046, 12272001);安徽省自然科学基金(2108085Y02)
详细信息
    作者简介:

    李子涵(2001- ),男,硕士研究生,904367672@qq.com

    通讯作者:

    程扬帆(1987- ),男,博士,教授,博士生导师,cyf518@mail.ustc.edu.cn

  • 中图分类号: O381

Influences of negative pressure conditions on the explosion temperature field and harmful effects of emulsion explosive

  • 摘要: 为了探究负压条件下乳化炸药的爆轰反应机制,利用自制的可视化球形爆炸罐,通过高速摄像机、压力传感器和噪声仪分别记录乳化炸药的爆炸火焰传播过程、爆轰波压力和爆炸噪声,采用比色测温技术重构了爆炸火球的二维温度场,并深入研究了初始真空度对乳化炸药爆炸温度场、爆轰波特征参数以及爆炸噪声的影响。实验结果表明:随着初始真空度的提高,爆炸火球亮度更高,持续时间更长,形态更稳定;当真空度为0 kPa时,火球在19.35 μs时破裂,而当真空度为100 kPa时,火球在58.05 μs才开始破裂;低初始真空度对火球温度影响较小,而60 kPa以上的初始真空度会显著提高乳化炸药的爆炸温度;冲击波峰值压力和比冲量均随着初始真空度的升高而降低,但初始真空度对冲击波正压作用时间变化的影响不明显。AUTODYN数值模拟结果表明,随着真空度的提高,冲击波峰值压力降低,冲击波速度逐渐降低至与爆轰产物的膨胀速度接近。此外,初始真空度的提高有利于降低爆炸噪声,与常压相比,当罐体内真空度为100 kPa时,爆炸噪声的声压级降低了35.9 dB,降幅为29.8%。
  • 图  1  真空爆炸实验装置

    Figure  1.  Vacuum explosion experimental facility

    图  2  球形乳化炸药药包

    Figure  2.  A spherical emulsion explosive charge

    图  3  高温钨丝灯校准实验

    Figure  3.  The calibration experiment of the high-temperature tungsten filament lamp

    图  4  0 kPa真空度下乳化炸药爆轰火球的传播过程

    Figure  4.  Explosion fireball propagation of emulsion explosive under the vacuum degree of 0 kPa

    图  5  100 kPa真空度下乳化炸药爆轰火球的传播过程

    Figure  5.  Explosion fireball propagation of emulsion explosive under the vacuum degree of 100 kPa

    图  6  0 kPa真空度下乳化炸药瞬态爆炸温度场

    Figure  6.  Transient explosion temperature field of emulsion explosive under the vacuum degree of 0 kPa

    图  7  100 kPa真空度下乳化炸药瞬态爆炸温度场

    Figure  7.  Transient explosion temperature field of emulsion explosive under the vacuum degree of 100 kPa

    图  8  不同真空度下乳化炸药爆炸平均温度-时间曲线

    Figure  8.  Average temperature-time curves of explosion of emulsion explosives under different vacuum degrees

    图  9  在不同真空度下乳化炸药爆炸的典型压力-时间曲线

    Figure  9.  Typical pressure-time curves of explosion of emulsion explosive under different vacuum degrees

    图  10  一维球对称楔形计算模型

    Figure  10.  The one-dimensional spherically symmetric wedge computational model

    图  11  不同真空度下乳化炸药的冲击波超压

    Figure  11.  Shock wave overpressures of emulsion explosive under different vacuum degrees

    图  12  0 kPa真空度下冲击波波阵面的形成与发展

    Figure  12.  Formation and development of the shock wave front under the vacuum degree of 0 kPa

    图  13  100 kPa真空度下冲击波波阵面的形成与发展

    Figure  13.  Formation and development of the shock wave front under the vacuum degree of 100 kPa

    图  14  不同初始真空度下乳化炸药爆炸噪声的声压级最大值

    Figure  14.  The maximum sound pressure levels of noises induced by explosion of emulsion explosive under different initial vacuum degrees

    表  1  乳化炸药试样质量

    Table  1.   Mass of emulsion explosive samples

    真空度/kPa质量/g
    样品1样品2样品3
    020.0119.9920.03
    2019.9720.0420.03
    4019.9820.0120.00
    6020.0019.9620.01
    8020.0220.0420.03
    10020.0419.9819.99
    下载: 导出CSV

    表  2  爆炸火球在不同真空度下的持续时间

    Table  2.   Duration of explosive fireballs under different vacuum degrees

    真空度/kPa火球持续时间/μs
    045.15
    2051.60
    4064.50
    6070.95
    8077.40
    10090.30
    下载: 导出CSV

    表  3  不同真空度下乳化炸药爆炸的冲击波参数

    Table  3.   Shock wave parameters for explosion of emulsion explosive under different vacuum degrees

    真空度/kPa峰值压力/kPa正压作用时间/μs正冲量/(Pa·s)
    064.5854213.18
    2061.4454111.98
    4057.1954310.92
    6053.0453210.43
    8044.065269.11
    10025.765144.17
    下载: 导出CSV

    表  4  不同真空度下的空气密度

    Table  4.   Air density under different vacuum degrees

    真空度/kPa空气密度/(kg·m−3)
    01.225
    200.980
    400.735
    600.490
    800.245
    1000.0123
    下载: 导出CSV

    表  5  乳化炸药JWL参数[22]

    Table  5.   The parameters of JWL equation of state for emulsion explosive[22]

    p2/GPaρ1/(g·cm−3)D/(m·s−1)A/GPaB/GPaR1R2ωe/(GJ·m−3)
    5.731.1551502.360.1984.471.200.331.60
    下载: 导出CSV
  • [1] CHENG Y F, MA H H, LIU R, et al. Explosion power and pressure desensitization resisting property of emulsion explosives sensitized by MgH2 [J]. Journal of Energetic Materials, 2014, 32(3): 207–218. DOI: 10.1080/07370652.2013.818078.
    [2] 程扬帆, 汪泉, 龚悦, 等. MgH2型复合敏化储氢乳化炸药的制备及其爆轰性能 [J]. 化工学报, 2017, 68(4): 1734–1739. DOI: 10.11949/j.issn.0438-1157.20161341.

    CHENG Y F, WANG Q, GONG Y, et al. Preparation and detonation properties of MgH2 type of composite sensitized emulsion explosives [J]. CIESC Journal, 2017, 68(4): 1734–1739. DOI: 10.11949/j.issn.0438-1157.20161341.
    [3] 李志敏, 汪旭光, 汪泉, 等. 负压环境对炸药爆炸冲击波影响的实验研究 [J]. 火炸药学报, 2021, 44(1): 35–40. DOI: 10.14077/j.issn.1007-7812-202007025.

    LI Z M, WANG X G, WANG Q, et al. Experimental study on the effect of negative pressure environment on explosion shock wave [J]. Chinese Journal of Explosives and Propellants, 2021, 44(1): 35–40. DOI: 10.14077/j.issn.1007-7812-202007025.
    [4] 李孝臣, 汪泉, 谢守冬, 等. 负压条件下球形爆炸容器内乳化炸药冲击波参数研究 [J]. 火炸药学报, 2023, 46(3): 252–259. DOI: 10.14077/j.issn.1007-7812.202207001.

    LI X C, WANG Q, XIE S D, et al. Study of shock wave parameters of emulsified explosives in spherical explosive containers under negative-pressure conditions [J]. Chinese Journal of Explosives & Propellants, 2023, 46(3): 252–259. DOI: 10.14077/j.issn.1007-7812.202207001.
    [5] SILNIKOV M V, CHERNYSHOV M V, MIKHAYLIN A I. Blast wave parameters at diminished ambient pressure [J]. Acta Astronautica, 2015, 109: 235–240. DOI: 10.1016/j.actaastro.2014.12.007.
    [6] JIANG F, WANG X F, HUANG Y F, et al. Effect of particle gradation of aluminum on the explosion field pressure and temperature of RDX-based explosives in vacuum and air atmosphere [J]. Defence Technology, 2019, 15(6): 844–852. DOI: 10.1016/j.dt.2019.06.007.
    [7] WANG F Q, WANG Q, WANG Y J, et al. Propagation rules of shock waves in confined space under different initial pressure environments [J]. Scientific Reports, 2022, 12(1): 14352. DOI: 10.1038/s41598-022-18567-0.
    [8] XI P, SUN S Y, SHANG Y, et al. Internal explosion performance of RDX@nano-B composite explosives [J]. Nanomaterials, 2023, 13(3): 412. DOI: 10.3390/nano13030412.
    [9] 汪泉, 林朝键, 李志敏, 等. 负压条件下爆炸罐内爆炸引起筒体振动及噪声特性 [J]. 振动与冲击, 2021, 40(6): 135–139, 200. DOI: 10.13465/j.cnki.jvs.2021.06.018.

    WANG Q, LIN C J, LI Z M, et al. Vibration and noise characteristics of a cylinder body caused by the explosion in an explosion tank under negative pressure [J]. Journal of Vibration and Shock, 2021, 40(6): 135–139, 200. DOI: 10.13465/j.cnki.jvs.2021.06.018.
    [10] VELDMAN R L, NANSTEEL M W, CHEN C C T, et al. The effect of ambient pressure on blast reflected impulse and overpressure [J]. Experimental Techniques, 2017, 41(3): 227–236. DOI: 10.1007/s40799-017-0171-8.
    [11] 李科斌, 李晓杰, 闫鸿浩, 等. 不同真空度下空中爆炸近场特性的数值模拟研究 [J]. 振动与冲击, 2018, 37(17): 270–276. DOI: 10.13465/j.cnki.jvs.2018.17.038.

    LI K B, LI X J, YAN H H, et al. Numerical simulation for near-field characteristics of air explosion under different degrees of vacuum [J]. Journal of Vibration and Shock, 2018, 37(17): 270–276. DOI: 10.13465/j.cnki.jvs.2018.17.038.
    [12] 张启威, 程扬帆, 夏煜, 等. 比色测温技术在瞬态爆炸温度场测量中的应用研究 [J]. 爆炸与冲击, 2022, 42(11): 114101. DOI: 10.11883/bzycj-2021-0477.

    ZHANG Q W, CHENG Y F, XIA Y, et al. Application of colorimetric pyrometer in the measurement of transient explosion temperature [J]. Explosion and Shock Waves, 2022, 42(11): 114101. DOI: 10.11883/bzycj-2021-0477.
    [13] YAO Y L, CHENG Y F, ZHANG Q W, et al. Explosion temperature mapping of emulsion explosives containing TiH2 powders with the two-color pyrometer technique [J]. Defence Technology, 2022, 18(10): 1834–1841. DOI: 10.1016/j.dt.2021.09.020.
    [14] WANG Z H, CHENG Y F, MOGI T, et al. Flame structures and particle-combustion mechanisms in nano and micron titanium dust explosions [J]. Journal of Loss Prevention in the Process Industries, 2022, 80: 104876. DOI: 10.1016/j.jlp.2022.104876.
    [15] HU F F, CHENG Y F, ZHANG B B, et al. Flame propagation and temperature distribution characteristics of magnesium dust clouds in an open space [J]. Powder Technology, 2022, 404: 117513. DOI: 10.1016/j.powtec.2022.117513.
    [16] CHENG Y F, YAO Y L, WANG Z H, et al. An improved two-colour pyrometer based method for measuring dynamic temperature mapping of hydrogen-air combustion [J]. International Journal of Hydrogen Energy, 2021, 46(69): 34463–34468. DOI: 10.1016/j.ijhydene.2021.07.224.
    [17] 张广华, 李彪彪, 沈飞, 等. 真空条件下炸药爆炸特性试验研究 [J]. 火炸药学报, 2020, 43(3): 308–313. DOI: 10.14077/j.issn.1007-7812.201903005.

    ZHANG G H, LI B B, SHEN F, et al. Experimental research on the explosion performance of explosives under vacuum conditions [J]. Chinese Journal of Explosives and Propellants, 2020, 43(3): 308–313. DOI: 10.14077/j.issn.1007-7812.201903005.
    [18] 汪泉, 陆军伟, 李志敏, 等. 负压条件下柱形爆炸罐内爆炸波传播规律 [J]. 兵工学报, 2021, 42(6): 1250–1256. DOI: 10.3969/j.issn.1000-1093.2021.06.015.

    WANG Q, LU J W, LI Z M, et al. Propagation law of explosion wave in columnar explosion tank under vacuum conditions [J]. Acta Armamentarii, 2021, 42(6): 1250–1256. DOI: 10.3969/j.issn.1000-1093.2021.06.015.
    [19] 辛春亮, 王俊林, 余道建, 等. TNT空中爆炸冲击波的工程和数值计算 [J]. 导弹与航天运载技术, 2018(3): 98–102. DOI: 10.7654/j.issn.1004-7182.20180319.

    XIN C L, WANG J L, YU D J, et al. Empirical formula and numerical simulation of TNT explosion shock wave in free air [J]. Missiles and Space Vehicles, 2018(3): 98–102. DOI: 10.7654/j.issn.1004-7182.20180319.
    [20] 李瑞, 李孝臣, 汪泉, 等. 低温和低压环境下炸药爆炸冲击波的传播特性 [J]. 爆炸与冲击, 2023, 43(2): 022301. DOI: 10.11883/bzycj-2022-0188.

    LI R, LI X C, WANG Q, et al. Propagation characteristics of blast wave in diminished ambient temperature and pressure environments [J]. Explosion and Shock Waves, 2023, 43(2): 022301. DOI: 10.11883/bzycj-2022-0188.
    [21] 陆军伟, 汪泉, 李志敏, 等. 环境压力对自由场冲击波传播影响的数值模拟 [J]. 工程爆破, 2021, 27(2): 51–57. DOI: 10.19931/j.EB.20200164.

    LU J W, WANG Q, LI Z M, et al. Numerical simulation of the influence of environmental pressure on free field shock wave propagation [J]. Engineering Blasting, 2021, 27(2): 51–57. DOI: 10.19931/j.EB.20200164.
    [22] 韩崇刚, 郭成更, 王娜峰. 基于AUTODYN的乳化炸药水下爆炸能量分布的数值研究 [J]. 工程爆破, 2018, 24(1): 27–31, 77. DOI: 10.3969/j.issn.1006-7051.2018.01.005.

    HAN C G, GUO C G, WANG N F. Numerical studies on energy distribution of emulsion explosives using AUTODYN [J]. Engineering Blasting, 2018, 24(1): 27–31, 77. DOI: 10.3969/j.issn.1006-7051.2018.01.005.
  • 加载中
图(14) / 表(5)
计量
  • 文章访问数:  251
  • HTML全文浏览量:  64
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-27
  • 修回日期:  2023-05-20
  • 网络出版日期:  2023-05-25
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回