空心弹高速入水机理及特性数值模拟研究

黄振贵 范浩伟 陈志华 周可 刘想炎 王浩

黄振贵, 范浩伟, 陈志华, 周可, 刘想炎, 王浩. 空心弹高速入水机理及特性数值模拟研究[J]. 爆炸与冲击, 2024, 44(1): 013301. doi: 10.11883/bzycj-2023-0156
引用本文: 黄振贵, 范浩伟, 陈志华, 周可, 刘想炎, 王浩. 空心弹高速入水机理及特性数值模拟研究[J]. 爆炸与冲击, 2024, 44(1): 013301. doi: 10.11883/bzycj-2023-0156
HUANG Zhengui, FAN Haowei, CHEN Zhihua, ZHOU Ke, LIU Xiangyan, WANG Hao. Numerical simulation study on the mechanism and characteristics of high-speed water entry of hollow projectiles[J]. Explosion And Shock Waves, 2024, 44(1): 013301. doi: 10.11883/bzycj-2023-0156
Citation: HUANG Zhengui, FAN Haowei, CHEN Zhihua, ZHOU Ke, LIU Xiangyan, WANG Hao. Numerical simulation study on the mechanism and characteristics of high-speed water entry of hollow projectiles[J]. Explosion And Shock Waves, 2024, 44(1): 013301. doi: 10.11883/bzycj-2023-0156

空心弹高速入水机理及特性数值模拟研究

doi: 10.11883/bzycj-2023-0156
基金项目: 国家自然科学基金(12002165);江苏省自然科学青年基金(BK20210348)
详细信息
    作者简介:

    黄振贵(1986- ),男,博士,副研究员,hzgkeylab@njust.edu.cn

  • 中图分类号: O383

Numerical simulation study on the mechanism and characteristics of high-speed water entry of hollow projectiles

  • 摘要: 为分析空心弹高速入水的机理及其特性,基于雷诺时均Navier-Stokes方程、VOF(volume of fluid)多相流模型、Realizable k-ε湍流模型,引入Schnerr-Sauer空化模型和重叠网格技术对空心弹高速入水进行数值模拟研究,获得了通孔孔径和头部形状对空心弹的空化特性、空泡形态和入水运动特性的影响规律。研究显示数值计算的空泡形态和入水速度、位移曲线与实验结果吻合较好,验证了数值模拟方法的可行性。结果表明:当通孔孔径不同时,通孔孔径越大,空化现象越明显,通孔射流越长,但对空泡半径的影响不大;通孔孔径越小,空泡闭合时间越早,与水面碰撞产生的阻力系数峰值越高,空心弹入水稳定后其阻力系数也越大;无量纲直径在0.575~0.600之间时,空心弹的运动最为稳定。当头部锥角不同时,头部锥角越大,空泡直径越大,空化现象出现得越晚,但空化生成的速度更快;随着头部锥角的增大,阻力系数变大,空心弹的速度衰减变快,相同时间运动的距离较短;头部锥角越大,俯仰角的变化越小,空心弹的运动越稳定。
  • 图  1  空心弹的结构

    Figure  1.  Structure of hollow projectile

    图  2  计算域和边界条件示意图

    Figure  2.  Schematic diagram of the calculation domain and boundary conditions

    图  3  计算域重叠网格划分

    Figure  3.  Overlapping griding of the computational domain

    图  4  不同网格密度下速度、阻力变化曲线

    Figure  4.  Velocity and resistance variation diagrams for different grid densities

    图  5  实验数据[24]与模拟数据的对比

    Figure  5.  Comparison of experimental[24] and simulated data

    图  6  高速入水空泡演化实验结果[24]与数值结果对比

    Figure  6.  Comparison of experimental[24] and numerical results for the evolution of high-speed water entry cavities

    图  7  不同通孔孔径空心弹的空化效应

    Figure  7.  Cavitation effects of the hollow projectiles with different through-hole apertures

    图  8  1.0 ms时刻空泡形态对比

    Figure  8.  Comparison of the cavity morphologies at 1.0 ms

    图  9  不同通孔孔径的空心弹射流长度的变化

    Figure  9.  Variation of jet length of hollow projectiles with different through-hole apertures

    图  10  空心弹入水时刻0.055 ms时流体的压力和速度

    Figure  10.  Pressure and velocity of the fluid at 0.055 ms when the hollow projectile enters the water

    图  11  不同通孔孔径空心弹的速度位移变化

    Figure  11.  Velocity and displacement variations for hollow projectiles with different through-hole apertures

    图  12  不同孔径空心弹阻力系数

    Figure  12.  Resistance coefficients for hollow projectiles with different apertures

    图  13  不同孔径空心弹俯仰角的变化

    Figure  13.  Variation of the pitch angles of the hollow projectiles with different apertures

    图  14  不同无量纲直径下的俯仰角及其峰值

    Figure  14.  Pitch angle and its peak value at different dimensionless diameters

    图  15  不同头型空心弹弹体周围网格

    Figure  15.  The grids around different head-shaped hollow projectiles

    图  16  不同头型空心弹的空化效应

    Figure  16.  Cavitation effects of the hollow projectiles with different head types

    图  17  不同入水时刻空心弹空泡形态对比

    Figure  17.  Comparison of cavity morphologies of hollow projectiles at different water entry moments

    图  18  不同头型空心弹入水速度和入水位移变化

    Figure  18.  Velocity and displacement variation of hollow projectiles with different head types

    图  19  不同头型空心弹入水阻力系数变化

    Figure  19.  Resistance coefficients of hollow projectiles with different head types

    图  20  不同头型空心弹入水俯仰角的变化

    Figure  20.  Variation of the pitch angles of the hollow projectiles with different head types

    表  1  空心弹模型参数

    Table  1.   Model parameters of hollow projectiles

    弹丸模型d1/mmd2/mmθ/(°)m/grC/mmS/mm2
    M11.646013.21514.53536.474
    M2246012.83714.61235.343
    M32.446012.41214.77333.961
    M42.846011.93814.95232.327
    M52.4412012.52814.15133.961
    M62.4418012.57614.01433.961
    下载: 导出CSV
  • [1] ZHAO Q, CHEN Z H, HUANG Z G, et al. Optimization of the aerodynamic configuration of a tubular projectile based on blind kriging [J]. Scientia Iranica, 2019, 26(1): 311–322. DOI: 10.24200/SCI.2017.20015.
    [2] 黄振贵, 李艳玲, 陈志华, 等. 空心弹的阻力特性与气动外形数值分析 [J]. 兵工学报, 2013, 34(5): 535–540. DOI: 10.3969/j.issn.1000-1093.2013.05.004.

    HUANG Z G, LI Y L, CHEN Z H, et al. Numerical investigations on the drag and aerodynamic characteristics of a hollow projectile [J]. Acta Armamentarii, 2013, 34(5): 535–540. DOI: 10.3969/j.issn.1000-1093.2013.05.004.
    [3] WORTHINGTON A M, COLE R S IV. Impact with a liquid surface studied by the aid of instantaneous photography: Paper II [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1900, 194(252): 175–199. DOI: 10.1098/rsta.1900.0016.
    [4] WORTHINGTON A M. A study of splashes [M]. New York: Longmans, Green, and Company, 1908: 25−76.
    [5] DE BACKER G, VANTORRE M, BEELS C, et al. Experimental investigation of water impact on axisymmetric bodies [J]. Applied Ocean Research, 2009, 31(3): 143–156. DOI: 10.1016/j.apor.2009.07.003.
    [6] TRUSCOTT T T, TECHET A H, BEAL D N. Shallow angle water entry of ballistic projectiles [C]//Proceedings of the 7th International Symposium on Cavitation. Michigan, USA: Ann Arbor, 2009: 1–14.
    [7] 陈先富. 弹丸入水空穴的试验研究 [J]. 爆炸与冲击, 1985, 5(4): 70–73.

    CHEN X F. A method of observing both the motion of the free surface and the front of the mass-ejection of shocked lead [J]. Explosion and Shock Waves, 1985, 5(4): 70–73.
    [8] 施红辉, 周浩磊, 吴岩, 等. 伴随超空泡产生的高速细长体入水实验研究 [J]. 力学学报, 2012, 44(1): 49–55. DOI: 10.6052/0459-1879-2012-1-lxxb2011-062.

    SHI H H, ZHOU H L, WU Y, et al. Experiments on water entry of high-speed slender body and the resulting supercavitation [J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(1): 49–55. DOI: 10.6052/0459-1879-2012-1-lxxb2011-062.
    [9] 宋武超, 王聪, 魏英杰, 等. 回转体倾斜入水空泡及弹道特性实验 [J]. 北京航空航天大学学报, 2016, 42(11): 2386–2394. DOI: 10.13700/j.bh.1001-5965.2015.0690.

    SONG W C, WANG C, WEI Y J, et al. Experiment of cavity and trajectory characteristics of oblique water entry of revolution bodies [J]. Journal of Beijing University of Aeronautics and Astronasutics, 2016, 42(11): 2386–2394. DOI: 10.13700/j.bh.1001-5965.2015.0690.
    [10] 赵成功, 王聪, 魏英杰, 等. 细长体水下运动空化流场及弹道特性实验 [J]. 爆炸与冲击, 2017, 37(3): 439–446. DOI: 10.11883/1001-1455(2017)03-0439-08.

    ZHAO C G, WANG C, WEI Y J, et al. Experiment of cavitation and ballistic characteristics of slender body underwater movement [J]. Explosion and Shock Waves, 2017, 37(3): 439–446. DOI: 10.11883/1001-1455(2017)03-0439-08.
    [11] 罗驭川, 黄振贵, 高建国, 等. 截锥体头型弹丸低速斜入水实验研究 [J]. 爆炸与冲击, 2019, 39(11): 113902. DOI: 10.11883/bzycj-2018-0498.

    LUO Y C, HUANG Z G, GAO J G, et al. Experiment research of low-speed oblique water-entry of truncated cone-shaped projectile [J]. Explosion and Shock Waves, 2019, 39(11): 113902. DOI: 10.11883/bzycj-2018-0498.
    [12] 朱珠, 罗松, 卢丙举, 等. 旋转射弹高速倾斜入水多相流场与弹道数值模拟 [J]. 爆炸与冲击, 2019, 39(11): 113901. DOI: 10.11883/bzycj-2018-0315.

    ZHU Z, LUO S, LU B J, et al. Numerical simulation of multiphase flow field and trajectory of high-speed oblique water entry of rotating projectile [J]. Explosion and Shock Waves, 2019, 39(11): 113901. DOI: 10.11883/bzycj-2018-0315.
    [13] 邵志宇, 伍思宇, 曹苗苗, 等. 斜截头弹体入水的弹道特性 [J]. 兵工学报, 2022, 43(6): 1255–1265. DOI: 10.12382/bgxb.2021.0301.

    SHAO Z Y, WU S Y, CAO M M, et al. Water-entry trajectory of truncated cone-shaped projectile [J]. Acta Armamentarii, 2022, 43(6): 1255–1265. DOI: 10.12382/bgxb.2021.0301.
    [14] 高旭东, 钱建平, 王晓鸣, 等. 空心弹丸流场数值模拟与阻力特性 [J]. 南京理工大学学报(自然科学版), 2005, 29(2): 158–161.

    GAO X D, QIAN J P, WANG X M, et al. Flowfield calculation and drag characteristic of hollow projectile [J]. Journal of Nanjing University of Science and Technology, 2005, 29(2): 158–161.
    [15] 任登凤, 谭俊杰, 张军. 非结构隐式方法在空心弹丸流场模拟中的应用 [J]. 力学与实践, 2006, 28(5): 24–27. DOI: 10.3969/j.issn.1000-0879.2006.05.005.

    REN D F, TAN J J, ZHANG J. Flowfield calculation of hollow projectile using implicit method based on unstructured meshes [J]. Mechanics in Engineering, 2006, 28(5): 24–27. DOI: 10.3969/j.issn.1000-0879.2006.05.005.
    [16] 杜宏宝, 蒋锋, 黄振贵, 等. 内锥型空心弹阻塞临界入口锥角仿真研究 [J]. 南京理工大学学报(自然科学版), 2018, 42(6): 642–646, 670. DOI: 10.14177/j.cnki.32-1397n.2018.42.06.002.

    DU H B, JIANG F HUANG Z G, et al. Simulation of critical inlet angle of inner conical hollow projectile under choke flow [J]. Journal of Nanjing University of Science and Technology, 2018, 42(6): 642–646, 670. DOI: 10.14177/j.cnki.32-1397n.2018.42.06.002.
    [17] 全鑫, 张红艳, 马铁华, 等. 内锥型空心弹阻塞喉径面积比的仿真研究 [J]. 兵器装备工程学报, 2021, 42(4): 97–101. DOI: 10.11809/bqzbgcxb2021.04.018.

    QUAN X, ZHANG H Y, MA T H, et al. Simulation research on critical area ratio of throat to entrance of inner conical hollow projectile under choke flow [J]. Journal of Ordnance Equipment Engineering, 2021, 42(4): 97–101. DOI: 10.11809/bqzbgcxb2021.04.018.
    [18] WESSAM M E, HUANG Z G, CHEN Z H. Aerodynamic characteristics and flow field investigations of an optimal hollow projectile [C]// Proceedings of the 5th International Conference on Mechanical Engineering and Mechanics. Yangzhou: ICMEM, 2014: 181–186. DOI: 10.13140/2.1.2037.9529.
    [19] SAVCHENKO Y N. Hydrodynamic characteristics of a disc with central duct in a supercavitation flow [M]//NESTERUK I. Supercavitation. Berlin: Springer, 2012: 107–113. DOI: 10.1007/978-3-642-23656-3_6.
    [20] HOU Y, HUANG Z G, CHEN Z H, et al. Different closure patterns of the hollow cylinder cavities with various water-entry velocities [J]. Ocean Engineering, 2021, 221: 108526. DOI: 10.1016/j.oceaneng.2020.108526.
    [21] HOU Y, HUANG Z G, CHEN Z H, et al. Experimental investigations on the oblique water entry of hollow cylinders [J]. Ocean Engineering, 2022, 266: 112800. DOI: 10.1016/j.oceaneng.2022.112800.
    [22] LIU H, ZHOU B, YU J W, et al. Experimental investigation on the multiphase flow characteristics of oblique water entry of the hollow cylinders [J]. Ocean Engineering, 2023, 272: 113902. DOI: 10.1016/j.oceaneng.2023.113902.
    [23] SCHNERR G H, SAUER J. Physical and numerical modeling of unsteady cavitation dynamics [C]// 4th International Conference on Multiphase Flow. New Orleans, LO, USA: ICMF, 2001.
    [24] CHEN T, HUANG W, ZHANG W, et al. Experimental investigation on trajectory stability of high-speed water entry projectiles [J]. Ocean Engineering, 2019, 175: 16–24. DOI: 10.1016/j.oceaneng.2019.02.021.
  • 加载中
图(20) / 表(1)
计量
  • 文章访问数:  168
  • HTML全文浏览量:  59
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-27
  • 修回日期:  2023-06-05
  • 网络出版日期:  2023-11-02
  • 刊出日期:  2024-01-11

目录

    /

    返回文章
    返回