强冲击载荷下单向加筋板拉伸撕裂的临界条件

姚熊亮 周晏霈 王治 魏庆媛

姚熊亮, 周晏霈, 王治, 魏庆媛. 强冲击载荷下单向加筋板拉伸撕裂的临界条件[J]. 爆炸与冲击, 2024, 44(2): 023104. doi: 10.11883/bzycj-2023-0182
引用本文: 姚熊亮, 周晏霈, 王治, 魏庆媛. 强冲击载荷下单向加筋板拉伸撕裂的临界条件[J]. 爆炸与冲击, 2024, 44(2): 023104. doi: 10.11883/bzycj-2023-0182
YAO Xiongliang, ZHOU Yanpei, WANG Zhi, WEI Qingyuan. Critical condition for tensile tearing failure of unidirectional stiffened plate under strong impact load[J]. Explosion And Shock Waves, 2024, 44(2): 023104. doi: 10.11883/bzycj-2023-0182
Citation: YAO Xiongliang, ZHOU Yanpei, WANG Zhi, WEI Qingyuan. Critical condition for tensile tearing failure of unidirectional stiffened plate under strong impact load[J]. Explosion And Shock Waves, 2024, 44(2): 023104. doi: 10.11883/bzycj-2023-0182

强冲击载荷下单向加筋板拉伸撕裂的临界条件

doi: 10.11883/bzycj-2023-0182
基金项目: 国家自然科学基金( 52001091),中央高校基本科研业务费专项资金(3072022TS2608),黑龙江省自然科学基金联合引导项目(LH2020E075)
详细信息
    作者简介:

    姚熊亮(1963- ),男,博士,教授,xiongliangyao@hrbeu.edu.cn

    通讯作者:

    王 治(1985- ),男,博士,副教授,wang_z@hrbeu.edu.cn

  • 中图分类号: O383; O347.3

Critical condition for tensile tearing failure of unidirectional stiffened plate under strong impact load

  • 摘要: 针对固支单向加筋板在冲击载荷下的拉伸撕裂临界条件开展研究,首先将均布冲击载荷下的固支单向加筋板简化为带板梁模型,基于固支梁冲击变形理论解给出了加筋板最大永久变形理论解,之后基于复合运动场模型,修正了固支梁端点拉伸应变与最大永久变形关系式,并以等效应变达到失效应变作为拉伸撕裂条件,建立了加筋板在冲击载荷下的拉伸撕裂临界条件。经过数值模拟验证,该最大永久变形理论解和拉伸撕裂临界条件具有适用性,理论与数值误差小于15%。
  • 图  1  带板梁示意图

    Figure  1.  Schematic diagram of beam structure model attached with band plate

    图  2  等效载荷示意图

    Figure  2.  Schematic diagram of equivalent load

    图  3  板的最终运动场示意图

    Figure  3.  Schematic diagram of the final motion mode of the plate

    图  4  简化的单一运动场示意图[20]

    Figure  4.  Schematic diagram of simplified single motion mode[20]

    图  5  小变形阶段塑性铰长度示意[22]

    Figure  5.  Schematic of plastic hinge length in small deformation stage[22]

    图  6  第1阶段变形

    Figure  6.  Deformation diagram of the first stage

    图  7  第2阶段变形

    Figure  7.  Deformation diagram of the second stage

    图  8  第3阶段变形

    Figure  8.  Deformation diagram of the third stage

    图  9  第4阶段变形

    Figure  9.  Deformation diagram of the fourth stage

    图  10  单向加筋板结构示意

    Figure  10.  Schematic of unidirectional stiffened plates

    图  11  单向加筋板结构模型

    Figure  11.  Unidirectional stiffened plate structure model

    图  12  实验舱室与数值模拟模型舱室

    Figure  12.  Experimental cabin and numerical simulation model cabin

    图  13  S1舱壁实验与模拟毁伤效果

    Figure  13.  Experimental and simulation damage of S1 bulkhead

    图  14  单向加筋板在8 MPa矩形冲击载荷下的位移云图

    Figure  14.  Displacement contour of unidirectional stiffened plate under 8 MPa rectangular impact load

    图  15  不同加筋板的变形量计算误差

    Figure  15.  Calculation error of deformation of different stiffened plates

    表  1  T型钢结构参数

    Table  1.   Structural parameters of stiffeners

    加强筋 尺寸/mm
    1 $ \bot \dfrac{{5 \times 80}}{{8 \times 80}}$
    2 $ \bot \dfrac{{5 \times 80}}{{8 \times 100}}$
    3 $ \bot \dfrac{{5 \times 100}}{{8 \times 100}}$
    下载: 导出CSV

    表  2  Q345钢参数

    Table  2.   Parameters of Q345 steel

    $\rho $/(kg·m−3)$E$/GPa$\nu$${\sigma _{\text{0}}}$/MPa${E_{\text{t}}}$/MPa$C$$q$$ {\varepsilon _{\text{f}}} $
    78702120.3134512914050.348
     注:ρ为密度,ν为泊松比。
    下载: 导出CSV

    表  3  实验舱壁结构参数

    Table  3.   Experimental bulkhead structural parameters

    舱壁编号 板厚/mm 加强筋尺寸/mm 加强筋间距/mm 加强筋方向
    S1 8 $ \bot \dfrac{{8 \times 60}}{{8 \times 18}}$ 600 背爆
    S2 600 迎爆
    S3 300 背爆
    S4 300 迎爆
    下载: 导出CSV

    表  4  实验与模拟结果对比

    Table  4.   Comparison of experimental and numerical simulation results

    舱壁最大永久变形量/mm误差/%
    实验模拟
    S139.041.76.92
    S237.039.25.95
    S331.533.46.03
    S427.527.21.09
    下载: 导出CSV

    表  5  单向加筋板变形量对比

    Table  5.   Comparison of deformation of unidirectional stiffened plates

    加强筋 矩形载荷/
    MPa
    最大永久变形/mm 误差/
    %
    加强筋 矩形载荷/
    MPa
    最大永久变形/mm 误差/
    %
    加强筋 矩形载荷/
    MPa
    最大永久变形/mm 误差/
    %
    理论 数值模拟 理论 数值模拟 理论 数值模拟
    1 8 366 326 12.27 2 8 327 320 2.19 3 8 306 307 0.33
    9 413 372 11.02 9 370 364 1.65 9 346 350 1.14
    10 459 416 10.34 10 412 405 1.73 10 387 390 0.77
    11 505 459 10.02 11 453 445 1.80 11 426 432 1.39
    12 550 502 9.56 12 494 485 1.86 12 466 471 1.06
    下载: 导出CSV

    表  6  临界撕裂载荷验证

    Table  6.   Verification of critical tearing failure load

    型材类型 临界载荷/MPa 与模拟结果的误差/%
    文献[20] 本文修正 模拟结果 文献[20] 本文修正
    型材1 26.9 16.8 17.1 57.31 1.75
    型材2 30.0 18.5 17.5 71.42 5.71
    型材3 31.2 20.0 17.8 75.28 12.36
    下载: 导出CSV
  • [1] NURICK G N, OLSON M D, FAGNAN J R, et al. Deformation and tearing of blast-loaded stiffened square plates [J]. International Journal of Impact Engineering, 1995, 16(2): 273–291. DOI: 10.1016/0734-743X(94)00046-Y.
    [2] CHUNG KIM YUEN S, NURICK G N. Experimental and numerical studies on the response of quadrangular stiffened plates. Part Ⅰ: subjected to uniform blast load [J]. International Journal of Impact Engineering, 2005, 31(1): 55–83. DOI: 10.1016/j.ijimpeng.2003.09.048.
    [3] RUDRAPATNA N S, VAZIRI R, OLSON M D. Deformation and failure of blast-loaded stiffened plates [J]. International Journal of Impact Engineering, 2000, 24(5): 457–474. DOI: 10.1016/S0734-743X(99)00172-4.
    [4] LANGDON G S, CHUNG KIM YUEN S, NURICK G N. Experimental and numerical studies on the response of quadrangular stiffened plates. Part Ⅱ: localised blast loading [J]. International Journal of Impact Engineering, 2005, 31(1): 85–111. DOI: 10.1016/j.ijimpeng.2003.09.050.
    [5] 牟金磊, 朱锡, 张振华, 等. 水下爆炸载荷作用下加筋板的毁伤模式 [J]. 爆炸与冲击, 2009, 29(5): 457–462. DOI: 10.3321/j.issn:1001-1455.2009.05.002.

    MOU J L, ZHU X, ZHANG Z H, et al. Failure modes of stiffened plates subjected to underwater explosion [J]. Explosion and Shock Waves, 2009, 29(5): 457–462. DOI: 10.3321/j.issn:1001-1455.2009.05.002.
    [6] 郑成, 孔祥韶, 徐维铮, 等. 舱内爆炸载荷作用下加筋板动态响应试验研究 [J]. 中国造船, 2018, 59(2): 129–139. DOI: 10.3969/j.issn.1000-4882.2018.02.014.

    ZHENG C, KONG X S, XU W Z, et al. Experimental study on dynamic response of stiffened plates subjected to internal blast loads [J]. Shipbuilding of China, 2018, 59(2): 129–139. DOI: 10.3969/j.issn.1000-4882.2018.02.014.
    [7] 焦立启, 侯海量, 陈鹏宇, 等. 爆炸冲击载荷下固支单向加筋板的动响应及破损特性研究 [J]. 兵工学报, 2019, 40(3): 592–600. DOI: 10.3969/j.issn.1000-1093.2019.03.019.

    JIAO L Q, HOU H L, CHEN P Y, et al. Research on dynamic response and damage characteristics of fixed supported one-way stiffened plates under blast loading [J]. Acta Armamentarii, 2019, 40(3): 592–600. DOI: 10.3969/j.issn.1000-1093.2019.03.019.
    [8] LI Y, REN X B, ZHAO T, et al. Dynamic response of stiffened plate under internal blast: experimental and numerical investigation [J]. Marine Structures, 2021, 77: 102957. DOI: 10.1016/j.marstruc.2021.102957.
    [9] SCHUBAK R B, OLSON M D, ANDERSON D L. Rigid-plastic modelling of blast-loaded stiffened plates-Part I: one-way stiffened plates [J]. International Journal of Mechanical Sciences, 1993, 35(3/4): 289–306. DOI: 10.1016/0020-7403(93)90083-7.
    [10] SCHUBAK R B, OLSON M D, ANDERSON D L. Rigid-plastic modelling of blast-loaded stiffened plates-Part II: partial end fixity, rate effects and two-way stiffened plates [J]. International Journal of Mechanical Sciences, 1993, 35(3/4): 307–324. DOI: 10.1016/0020-7403(93)90084-8.
    [11] 刘土光, 胡要武, 郑际嘉. 固支加筋方板在爆炸载荷作用下的刚塑性动力响应分析 [J]. 爆炸与冲击, 1994, 14(1): 55–65.

    LIU T G, HU Y W, ZHENG J J. Dynamic response analysis of rigid perfectly plastic clamped square plates with stiffener subjected to blast loading [J]. Explosion and Shock Waves, 1994, 14(1): 55–65.
    [12] 刘土光, 唐文勇. 加筋弧结构在冲击载荷作用下的塑性动力响应 [J]. 华中理工大学学报, 1996, 24(1): 106–109.

    LIU T G, TANG W Y. The dynamic plastic response of a structure with stiffened plates under impulsive loading [J]. Journal of Huazhong University of Science & Technology, 1996, 24(1): 106–109.
    [13] 刘敬喜, 刘尧, 汤皓泉, 等. 爆炸载荷作用下单向加筋方板的大挠度塑性动力响应分析 [J]. 振动与冲击, 2011, 30(4): 182–187. DOI: 10.3969/j.issn.1000-3835.2011.04.038.

    LIU J X, LIU Y, TANG H Q, et al. Plastic and large deflection dynamic response analysis of a one way stiffened square plate subjected to blast loads [J]. Journal of Vibration and Shock, 2011, 30(4): 182–187. DOI: 10.3969/j.issn.1000-3835.2011.04.038.
    [14] PENG Y, YANG P, HU K. Nonlinear dynamic response of blast-loaded stiffened plates considering the strain rate sensitivity [J]. Marine Structures, 2020, 70: 102699. DOI: 10.1016/j.marstruc.2019.102699.
    [15] YANG B, WANG D Y. Dynamic buckling of stiffened plates with elastically restrained edges under in-plane impact loading [J]. Thin-Walled Structures, 2016, 107: 427–442. DOI: 10.1016/j.tws.2016.06.019.
    [16] 张振华, 朱锡, 刘润泉. 潜艇典型结构在爆炸冲击载荷作用下开裂判据的试验研究 [J]. 爆炸与冲击, 2004, 24(6): 541–545.

    ZHANG Z H, ZHU X, LIU R Q. Experiment research of crack criterion of representative submarine structure subjected to explosive loading [J]. Explosion and Shock Waves, 2004, 24(6): 541–545.
    [17] 吴林杰, 朱锡, 侯海量, 等. 空中近距爆炸下加筋板架的毁伤模式仿真研究 [J]. 振动与冲击, 2013, 32(14): 77–81, 126. DOI: 10.3969/j.issn.1000-3835.2013.14.013.

    WU L J, ZHU X, HOU H L, et al. Simulations for damage modes of a stiffened plate subjected to close-range air-blast loading [J]. Journal of Vibration and Shock, 2013, 32(14): 77–81, 126. DOI: 10.3969/j.issn.1000-3835.2013.14.013.
    [18] 支旭东, 张荣, 林莉, 等. Q235B钢动态本构及在LS-DYNA中的应用 [J]. 爆炸与冲击, 2018, 38(3): 596–602. DOI: 10.11883/bzycj-2016-0286.

    ZHI X D, ZHANG R, LIN L, et al. Dynamic constitutive model of Q235B steel and its application in LS-DYNA [J]. Explosion and Shock Waves, 2018, 38(3): 596–602. DOI: 10.11883/bzycj-2016-0286.
    [19] 孙丽萍, 闫发锁. 船舶与海洋工程结构物强度 [M]. 哈尔滨: 哈尔滨工程大学出版社, 2017.
    [20] JONES N. Structural impact [M]. New York: Cambridge University Press, 2012.
    [21] 颜丰, 刘敬喜. 爆炸载荷下固支矩形板的大挠度塑性动力响应 [J]. 中国舰船研究, 2013, 8(1): 47–53. DOI: 10.3969/j.issn.1673-3185.2013.01.008.

    YAN F, LIU J X. The large deflection dynamic plastic response of rectangular plates subjected to blast load [J]. Chinese Journal of Ship Research, 2013, 8(1): 47–53. DOI: 10.3969/j.issn.1673-3185.2013.01.008.
    [22] NONAKA T. Some interaction effects in a problem of plastic beam dynamics—Part 2: analysis of a structure as a system of one degree of freedom [J]. Journal of Applied Mechanics, 1967, 34(3): 631–637. DOI: 10.1115/1.3607754.
    [23] SYMONDS P S, MENTEL T J. Impulsive loading of plastic beams with axial constraints [J]. Journal of the Mechanics and Physics of Solids, 1958, 6(3): 186–202. DOI: 10.1016/0022-5096(58)90025-5.
    [24] 米海珍, 胡燕妮. 塑性力学 [M]. 北京: 清华大学出版社, 2014.
    [25] 余同希, 邱信明. 冲击动力学 [M]. 北京: 清华大学出版社, 2011.
    [26] QIN Y Z, WANG Y, WANG Z, et al. Investigation on similarity laws of cabin structure under internal blast loading [J]. Ocean Engineering, 2022, 260: 111998. DOI: 10.1016/J.OCEANENG.2022.111998.
  • 加载中
图(15) / 表(6)
计量
  • 文章访问数:  162
  • HTML全文浏览量:  44
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-17
  • 修回日期:  2023-10-17
  • 网络出版日期:  2023-12-21
  • 刊出日期:  2024-02-06

目录

    /

    返回文章
    返回