Research progress on impact energy release characteristics of reactive disordered alloy and its application in kill elements
-
摘要: 无序合金是一种新型金属材料,突破了传统的合金设计理念,表现出不同于传统合金的优异力学性能、冲击释能及剪切自锐特性,在高温、高压、高应变率等环境具有良好的应用前景。分析活性无序合金的冲击释能特性对其应用于军事领域有着重要的指导作用,能为弹药战斗部的设计提供参考。本文阐述了静动态力学实验中典型无序合金的反应释能现象;总结了撞击速度与活性无序合金释能超压、释能效率之间的关系;讨论了撞击速度、材料破碎程度及靶标特征等因素对活性无序合金释能机理的影响;归纳了制备工艺及元素类型对活性无序合金释能特性的调控效果。进一步,本文梳理了活性无序合金在破片、穿甲弹芯和聚能装药战斗部三个方向的应用研究进展,分析了活性无序合金毁伤元的侵彻行为和作用机制。最后,针对活性无序合金材料未来的发展趋势和需求进行了展望。Abstract: Disordered alloy is a new kind of reactive material, which breaks through the design concept of traditional alloy and exhibits excellent mechanical properties, impact energy release characteristics and adiabatic shear sensitivity, showing good application prospects in high temperature, high pressure, high strain rates and other application environments. Analyzing the impact energy release characteristics of reactive disordered alloy has an important guiding role for its development in the military field and can provide the basis for the design and application of warheads for ammunition. In this paper, the impact energy release characteristics of reactive disordered alloys are introduced from four aspects, including the energy release phenomenon of chemical reaction, the energy release law induced by impacting, the energy release mechanism and the regulation of the energy release behaviors. The chemical reaction showing energy release phenomenon in static and dynamic mechanical experiments is described. The relationship between impact velocities and the energy release overpressures or the efficiency of energy release of reactive disordered alloys is obtained. The effect between impact velocities and crushing degree of the reactive disordered alloys or characteristics of the target on the energy release mechanism is discussed. At the same time, the regulation effects of preparation process and the kinds of element on energy release effect of disordered alloy materials are summarized. This kind of alloy own good impact energy release characteristics, presented an ideal energetic structural material. Furthermore, the research progress of reactive disordered alloys applied to warheads in military area is summarized from three directions, including fragment, armor-piercing core and shaped charge liner. The macro and micro penetration behavior and mechanism of warheads of reactive disordered alloys are analyzed under high-speed loading conditions. Via the design of the structure, the good penetration and damage performance benefit from the self-sharpening and energy release characteristics of the material. Finally, the further development trend and demands of reactive disordered alloy are prospected.
-
图 63 射流侵彻后靶板的EBSD细观分析:(a)变形区IPF图;(a)中区域b的(b1、b2)IPF图和对应的KAM图;(a)中区域c的(c1, c2) IPF图和对应的KAM图[113]
Figure 63. Microstructural analysis of the residual jet after penetration via EBSD: (a) IPF map of deformation zone; (b1, b2) IPF map and corresponding KAM map of region b in (a); (c1, c2) IPF map and corresponding KAM map of region c in (a)[113]
图 64 再结晶区的高倍BSE-SEM图像(a)及线扫描分析(b):在(a)中显示的两个晶界上进行线扫描,其对应的位置在(b)中用虚线标记[113]
Figure 64. High-magnification BSE-SEM images (a) and line scan analysis (b) of the recrystallization region: a line scan was conducted across two grain boundaries as displayed in (a), the corresponding locations of which are labeled with dashed lines in (b)[113]
图 65 CoCrNi残余射流侵彻后的TEM组织分析:(a) CoCrNi残余射流的TEM照片,其中的白色虚线标记了沿晶界的纳米尺寸沉淀;(b) 降水(图(a)中的红色矩形区域)的HAADF-TEM照片;(c~e) 图(b)中对应的Co、Cr、Ni元素分布;(f) 降水SAED图(区域I(b)),(g) 图(b)中Ⅰ,Ⅱ,Ⅲ,Ⅳ区域Co,Cr,Ni元素含量[113]
Figure 65. Microstructural analysis of CoCrNi residual jet after penetration by TEM: (a) TEM images of CoCrNi residual jet, where the white dashed line marks the nanosized precipitations along grain boundaries; (b) HAADF-TEM image of the precipitation (red rectangle region in (a)); (c–e) Corresponding element distributions of Co, Cr, and Ni in (b); (f) SAED pattern ofprecipitation (region I in (b)); (g) Element content of Co, Cr, and Ni in region I, II, III, IV in (b)[113]
-
[1] 汪卫华. 非晶态物质的本质和特性 [J]. 物理学进展, 2013, 33(5): 177–351.WANG W H. The nature and properties of amorphous matter [J]. Progress in Physics, 2013, 33(5): 177–351. [2] FALK M L, KANGER J S. 类固体非晶态材料的变形与失效 [J]. 力学进展, 2021, 51(2): 406–426. DOI: 10.6052/1000-0992-21-034.FALK M L, KANGER J S. Deformation and failure of amorphous, solidlike materials [J]. Advances in Mechanics, 2021, 51(2): 406–426. DOI: 10.6052/1000-0992-21-034. [3] 乔吉超, 张浪渟, 童钰, 等. 基于微观结构非均匀性的非晶合金力学行为 [J]. 力学进展, 2022, 529(1): 117–152. DOI: 10.6052/1000-0992-21-038.QIAO J C, ZHANG L T, TONG Y, et al. Mechancial properties of amorphous alloys: in the framework of the microstructure heterogeneity [J]. Advances in Mechanics, 2022, 529(1): 117–152. DOI: 10.6052/1000-0992-21-038. [4] LIU D, YU Q, KABRA S, et al. Exceptional fracture toughness of CrCoNi-based medium-and high-entropy alloys at 20 Kelvin [J]. Science, 2022, 378(6623): 978–983. DOI: 10.1126/science.abp8070. [5] 卜叶强, 王宏涛. 多主元合金中的化学短程有序 [J]. 力学进展, 2021, 51(4): 915–919. DOI: 10.6052/1000-0992-21-027.BU Y Q, WANG H T. Short-range order in multicomponent alloys [J]. Advances in Mechanics, 2021, 51(4): 915–919. DOI: 10.6052/1000-0992-21-027. [6] 陈曦, 杜成鑫, 程春, 等. Zr基非晶合金材料的冲击释能特性 [J]. 兵器材料科学与工程, 2018, 41(6): 44–49. DOI: 10.14024/j.cnki.1004-244x.20180717.002.CHEN X, DU C X, CHENG C, et al. Impact energy releasing characteristics of Zr-based amorphous alloy [J]. Ordnance Material Science and Engineering, 2018, 41(6): 44–49. DOI: 10.14024/j.cnki.1004-244x.20180717.002. [7] 张周然. HfZrTiTa x高熵合金含能结构材料的组织结构与力学性能研究 [D]. 长沙: 国防科技大学, 2017: 80–84. DOI: 10.27052/d.cnki.gzjgu.2017.000221.ZHANG Z R. Microstructure and mechanical properties of HfZrTiTa x high-entropy alloys energetic structural materials [D]. Changsha: National University of Defense Technology, 2017: 80–84. DOI: 10.27052/d.cnki.gzjgu.2017.000221. [8] 李继承, 陈小伟. 块体金属玻璃及其复合材料的压缩剪切特性和侵彻/穿甲“自锐”行为 [J]. 力学进展, 2011, 41(5): 480–518. DOI: 10.6052/1000-0992-2011-5-lxjzJ2011-056.LI J C, CHEN X W. Compressive-shear behavior and self-sharpening of bulk metallic glasses and their composite materials [J]. Advances in Mechanics, 2011, 41(5): 480–518. DOI: 10.6052/1000-0992-2011-5-lxjzJ2011-056. [9] LIU X F, TIAN Z L, ZHANG X F, et al. “Self-sharpening”tungsten high-entropy alloy [J]. Acta Materialia, 2020, 186: 257–266. DOI: 10.1016/j.actamat.2020.01.005. [10] LIU T W, LI T, DAI L H. Near-equiatomic µ phase in self-sharpening tungsten-based high-entropy alloy [J]. Metals, 2022, 12(7): 1130. DOI: 10.3390/met12071130. [11] 张玉令, 施冬梅, 张云峰, 等. W骨架/Zr基非晶合金复合材料破片侵彻能力与后效研究 [J]. 爆炸与冲击, 2021, 41(5): 053301. DOI: 10.11883/bzycj-2020-0063.ZHANG Y L, SHI D M, ZHANG Y F, et al. Investigation of penetration ability and aftereffect of Zr-based metallic glass reinforced porous W matrix composite fragments [J]. Explosion and Shock Waves, 2021, 41(5): 053301. DOI: 10.11883/bzycj-2020-0063. [12] HAN J L, CHEN X, DU Z H, et al. Application of W/Zr amorphous alloy for shaped charge liner [J]. Materials Research Express, 2019, 6(11): 115209. DOI: 10.1088/2053-1591/ab47d7. [13] CONNER R D, DANDLIKER R B, SCRUGGS V, et al. Dynamic deformation behavior of tungsten-fiber/metallic-glass matrix composites [J]. International Journal of Impact Engineering, 2000, 24(5): 435–444. DOI: 10.1016/s0734-743x(99)00176-1. [14] SCHROERS J, JOHNSON W L. Highly processable bulk metallic glass-forming alloys in the Pt-Co-Ni-Cu-P system [J]. Applied Physics Letters, 2004, 84(18): 3666–3668. DOI: 10.1063/1.1738945. [15] 胡宏伟, 宋浦, 邓国强, 等. 温压炸药的特性及发展现状 [J]. 力学进展, 2022, 52(1): 53–78. DOI: 10.6052/1000-0992-21-021.HU H W, SONG P, DENG G Q, et al. Characteristics of thermobaric explosives and their advances [J]. Advances in Mechanics, 2022, 52(1): 53–78. DOI: 10.6052/1000-0992-21-021. [16] INOUE A, ZHANG T, MASUMOTO T. Preparation of bulky amorphous Zr-Al-Co-Ni-Cu alloys by copper mold casting and their thermal and mechanical properties [J]. Materials Transactions, JIM, 1995, 36(3): 391–398. DOI: 10.2320/matertrans1989.36.391. [17] INOUE A, AMIYA K, KATSUYA A, et al. Mechanical properties and thermal stability of Ti- and Al-based amorphous wires prepared by a melt extraction method [J]. Materials Transactions, JIM, 1995, 36(7): 858–865. DOI: 10.2320/matertrans1989.36.858. [18] YOKOYAMA Y, INOUE A. Solidification condition of bulk glassy Zr60Al10Ni10Cu15Pd5 alloy by unidirectional arc melting [J]. Materials Transactions, JIM, 1995, 36(11): 1398–1402. DOI: 10.2320/matertrans1989.36.1398. [19] LIU C T, HEATHERLY L, HORTON J A, et al. Test environments and mechanical properties of Zr-base bulk amorphous alloys [J]. Metallurgical and Materials Transactions A, 1998, 29(7): 1811–1820. DOI: 10.1007/s11661-998-0004-6. [20] GILBERT C J, AGER III J W, SCHROEDER V, et al. Light emission during fracture of a Zr-Ti-Ni-Cu-Be bulk metallic glass [J]. Applied Physics Letters, 1999, 74(25): 3809–3811. DOI: 10.1063/1.124187. [21] 潘念侨. Zr基非晶合金材料动态本构关系及其释能效应研究 [D]. 南京: 南京理工大学, 2016: 36–54. DOI: 10.7666/d.Y3046370.PAN N Q. Dynamic Zr based amorphous alloy material constitutive relation and release energy effect reserch [D]. Nanjing: Nanjing University of Science and Technology, 2016: 36–54. DOI: 10.7666/d.Y3046370. [22] ZHANG Z R, ZHANG H, TANG Y, et al. Microstructure, mechanical properties and energetic characteristics of a novel high-entropy alloy HfZrTiTa0.53 [J]. Materials & Design, 2017, 133: 435–443. DOI: 10.1016/j.matdes.2017.08.022. [23] AMES R. Vented chamber calorimetry for impact-initiated energetic materials [C]// Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2005: 279. DOI: 10.2514/6.2005-279. [24] AMES R G. Energy release characteristics of impact-initiated energetic materials [J]. MRS Online Proceedings Library, 2005, 896(1): 308. DOI: 10.1557/PROC-0896-H03-08. [25] 汪德武, 任柯融, 江增荣, 等. 活性材料冲击释能行为研究进展 [J]. 爆炸与冲击, 2021, 41(3): 031408. DOI: 10.11883/bzycj-2020-0337.WANG D W, REN K R, JIANG Z R, et al. Shock-induced energy release behaviors of reactive materials [J]. Explosion and Shock Waves, 2021, 41(3): 031408. DOI: 10.11883/bzycj-2020-0337. [26] WANG C T, HE Y, JI C, et al. Investigation on shock-induced reaction characteristics of a Zr-based metallic glass [J]. Intermetallics, 2018, 93: 383–388. DOI: 10.1016/j.intermet.2017.11.004. [27] GILBERT C J, AGER III J W, SCHROEDER V, et al. Mechanism for light emission during fracture of a Zr-Ti-Cu-Ni-Be bulk metallic glass: temperature measurements in air and nitrogen [J]. MRS Online Proceedings Library, 1998, 554(1): 191–196. DOI: 10.1557/PROC-554-191. [28] WEI H Y, YOO C S. Kinetics of small single particle combustion of zirconium alloy [J]. Journal of Applied Physics, 2012, 111(2): 023506. DOI: 10.1063/1.3677789. [29] WEI H Y, YOO C S. Dynamic responses of reactive metallic structures under thermal and mechanical ignitions [J]. Journal of Materials Research, 2012, 27(21): 2705–2717. DOI: 10.1557/jmr.2012.302. [30] 尚春明, 施冬梅, 李文钊, 等. Zr基非晶合金燃烧热测试方法 [J]. 兵器装备工程学报, 2019, 40(8): 193–197. DOI: 10.11809/bqzbgcxb2019.08.038.SHANG C M, SHI D M, LI W Z, et al. Study on combustion heat method of Zr-based amorphous alloy [J]. Journal of Ordnance Equipment Engineering, 2019, 40(8): 193–197. DOI: 10.11809/bqzbgcxb2019.08.038. [31] TU J, QIAO L, SHAN Y, et al. Study on the impact-induced energy release characteristics of Zr68.5Cu12Ni12Al7.5 amorphous alloy [J]. Materials, 2021, 14(6): 1447. DOI: 10.3390/ma14061447. [32] 尚春明, 施冬梅, 张云峰, 等. Zr基非晶合金的燃烧释能特性 [J]. 含能材料, 2020, 28(6): 564–568. DOI: 10.11943/CJEM2019219.SHANG C M, SHI D M, ZHANG Y F, et al. Combustion and energy release characteristics of Zr-based amorphous alloys [J]. Chinese Journal of Energetic Materials, 2020, 28(6): 564–568. DOI: 10.11943/CJEM2019219. [33] 侯先苇, 熊玮, 陈海华, 等. 两种典型高熵合金冲击释能及毁伤特性研究 [J]. 力学学报, 2021, 53(9): 2528–2540. DOI: 10.6052/0459-1879-21-327.HOU X W, XIONG W, CHEN H H, et al. Impact energy release and damage characteristics of two high-entropy alloys [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2528–2540. DOI: 10.6052/0459-1879-21-327. [34] 张云峰, 刘国庆, 李晨, 等. 新型亚稳态合金材料冲击释能特性 [J]. 含能材料, 2019, 27(8): 692–697. DOI: 10.11943/CJEM2018170.ZHANG Y F, LIU G Q, LI C, et al. Shock energy release characteristics of novel metastable alloy materials [J]. Chinese Journal of Energetic Materials, 2019, 27(8): 692–697. DOI: 10.11943/CJEM2018170. [35] LUO P G, WANG Z C, JIANG C L, et al. Experimental study on impact-initiated characters of W/Zr energetic fragments [J]. Materials & Design, 2015, 84: 72–78. DOI: 10.1016/j.matdes.2015.06.107. [36] CHEN X, DU C X, CHENG C, et al. Impact-induced chemical reaction behavior of ZrTiNiCuBe bulk metallic glass fragments impacting on thin plates [J]. Materiali in Tehnologije, 2018, 52(6): 737–743. DOI: 10.17222/mit.2018.089. [37] 张云峰, 罗兴柏, 施冬梅, 等. 动态压缩下Zr基非晶合金失效释能机理 [J]. 爆炸与冲击, 2019, 39(6): 063101. DOI: 10.11883/bzycj-2018-0114.ZHANG Y F, LUO X B, SHI D M, et al. Failure behavior and energy release of Zr-based amorphous alloy under dynamic compression [J]. Explosion and Shock Waves, 2019, 39(6): 063101. DOI: 10.11883/bzycj-2018-0114. [38] JI C, HE Y, WANG C T, et al. Effect of dynamic fragmentation on the reaction characteristics of a Zr-based metallic glass [J]. Journal of Non-Crystalline Solids, 2019, 515: 149–156. DOI: 10.1016/j.jnoncrysol.2019.04.022. [39] GRADY D E. Fragment size distributions from the dynamic fragmentation of brittle solids [J]. International Journal of Impact Engineering, 2008, 35(12): 1557–1562. DOI: 10.1016/j.ijimpeng.2008.07.042. [40] REN K R, LIU H Y, CHEN R, et al. Compression properties and impact energy release characteristics of TiZrNbV high-entropy alloy [J]. Materials Science and Engineering: A, 2021, 827: 142074. DOI: 10.1016/j.msea.2021.142074. [41] LOU H B, WANG X D, XU F, et al. 73 mm-diameter bulk metallic glass rod by copper mould casting [J]. Applied Physics Letters, 2011, 99(5): 051910. DOI: 10.1063/1.3621862. [42] INOUE A, ZHANG T. Fabrication of bulk glassy Zr55Al10Ni5Cu30 alloy of 30 mm in diameter by a suction casting method [J]. Materials Transactions, JIM, 1996, 37(2): 185–187. DOI: 10.2320/matertrans1989.37.185. [43] DONG W B, ZHANG H F, CAI J, et al. Enhanced plasticity in a Zr-based bulk metallic glass containing nanocrystalline precipitates [J]. Journal of Alloys and Compounds, 2006, 425(1/2): L1–L4. DOI: 10.1016/j.jallcom.2006.01.021. [44] 黄彩敏. 金属型含能结构材料的组织调控与力、热特性研究 [D]. 长沙: 国防科技大学, 2020. DOI: 10.27052/d.cnki.gzjgu.2020.000084.HUANG C M. Research on prepartion, mechanical and thermal characteristics of metallic energetic structural materials [D]. Changsha: National University of Defense Technology, 2020. DOI: 10.27052/d.cnki.gzjgu.2020.000084. [45] HUANG C M, BAI S X, LI S, et al. Effect of in-situ crystalline phases on the mechanical properties and energy release behaviors of Zr55Ni5Al10Cu30 bulk metallic glasses [J]. Intermetallics, 2020, 119: 106720. DOI: 10.1016/j.intermet.2020.106720. [46] HUANG H L, WU Y, HE J Y, et al. Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering [J]. Advanced Materials, 2017, 29(30): 1701678. DOI: 10.1002/adma.201701678. [47] SUH D W, RYU J H, JOO M S, et al. Medium-alloy manganese-rich transformation-induced plasticity steels [J]. Metallurgical and Materials Transactions A, 2013, 44(1): 286–293. DOI: 10.1007/s11661-012-1402-3. [48] LI Z M, PRADEEP K G, DENG Y, et al. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off [J]. Nature, 2016, 534(7606): 227–230. DOI: 10.1038/nature17981. [49] LI X, CHEN L Q, ZHAO Y, et al. Influence of manganese content on ε-/ α′-martensitic transformation and tensile properties of low-C high-Mn TRIP steels [J]. Materials & Design, 2018, 142: 190–202. DOI: 10.1016/j.matdes.2018.01.026. [50] 王睿鑫. NbZrTiTa高熵合金的组织结构演变及结构释能特性研究 [D]. 长沙: 国防科技大学, 2018. DOI: 10.27052/d.cnki.gzjgu.2018.001416.WANG R X. Microstructure evolution and energetic structural properties of NbZrTiTa high-entropy alloy [D]. Changsha: National University of Defense Technology, 2018. DOI: 10.27052/d.cnki.gzjgu.2018.001416. [51] TANG Y, WANG R X, XIAO B, et al. A review on the dynamic-mechanical behaviors of high-entropy alloys [J]. Progress in Materials Science, 2023, 135: 101090. DOI: 10.1016/j.pmatsci.2023.101090. [52] 黄劲松, 刘咏, 陈仕奇, 等. 锆基非晶合金的研究进展与应用 [J]. 中国有色金属学报, 2003, 13(6): 1321–1332. DOI: 10.3321/j.issn:1004-0609.2003.06.001.HUANG J S, LIU Y, CHEN S Q, et al. Progress and application of Zr-based amorphous alloys [J]. The Chinese Journal of Nonferrous Metals, 2003, 13(6): 1321–1332. DOI: 10.3321/j.issn:1004-0609.2003.06.001. [53] 马卫锋, 寇宏超, 李金山, 等. W纤维增强Zr基非晶复合材料的界面研究现状 [J]. 材料导报, 2006, 20(4): 64–66. DOI: 10.3321/j.issn:1005-023X.2006.04.018.MA W F, KOU H C, LI J S, et al. The present status of interface study of W fiber reinforced Zr-based amorphous matrix composite [J]. Materials Reports, 2006, 20(4): 64–66. DOI: 10.3321/j.issn:1005-023X.2006.04.018. [54] INOUE A. Stabilization of metallic supercooled liquid and bulk amorphous alloys [J]. Acta Materialia, 2000, 48(1): 279–306. DOI: 10.1016/s1359-6454(99)00300-6. [55] QIU K Q, WANG A M, ZHANG H F, et al. Mechanical properties of tungsten fiber reinforced ZrAlNiCuSi metallic glass matrix composite [J]. Intermetallics, 2002, 10(11/12): 1283–1288. DOI: 10.1016/s0966-9795(02)00136-x. [56] 武晓峰, 邱克强, 张海峰, 等. SiC颗粒对Zr55Al10Ni5Cu30非晶形成能力和热稳定性的影响 [J]. 金属学报, 2003, 39(4): 414–418. DOI: 10.3321/j.issn:0412-1961.2003.04.016.WU X F, QIU K Q, ZHANG H F, et al. Effect of SiCp on the glass forming ability and thermal stability of Zr55Al10Ni5Cu30 bulk metallic glass [J]. Acta Metallurgica Sinica, 2003, 39(4): 414–418. DOI: 10.3321/j.issn:0412-1961.2003.04.016. [57] XU Y K, XU J. Ceramics particulate reinforced Mg65Cu20Zn5Y10 bulk metallic glass composites [J]. Scripta Materialia, 2003, 49(9): 843–848. DOI: 10.1016/s1359-6462(03)00447-0. [58] 寇生中, 郑宝超, 李娜, 等. 不同元素掺杂对Zr基非晶形成能力及力学性能的影响 [J]. 金属功能材料, 2011, 18(2): 1–5. DOI: 10.13228/j.boyuan.issn1005-8192.2011.02.009.KOU S Z, ZHENG B C, LI N, et al. Effects of additional different element on glass forming ability and mechanical properties of bulk Zr-based amorphous alloys [J]. Metallic Functional Materials, 2011, 18(2): 1–5. DOI: 10.13228/j.boyuan.issn1005-8192.2011.02.009. [59] 张云峰, 罗兴柏, 施冬梅, 等. W骨架/Zr基非晶合金复合材料细观胞元重构 [J]. 稀有金属材料与工程, 2019, 48(1): 137–142.ZHANG Y F, LUO X B, SHI D M, et al. Reconstruction of meso-cells of Zr-based metallic glass reinforced porous W matrix composite [J]. Rare Metal Materials and Engineering, 2019, 48(1): 137–142. [60] 张云峰, 罗兴柏, 刘国庆, 等. W骨架/Zr基非晶合金复合材料破片的冲击释能特性 [J]. 稀有金属材料与工程, 2020, 49(8): 2549–2556.ZHANG Y F, LUO X B, LIU G Q, et al. Shock-induced reaction characteristics of porous W/Zr-based metallic glass composite fragments [J]. Rare Metal Materials and Engineering, 2020, 49(8): 2549–2556. [61] MA Y S, ZHOU L, ZHANG K C, et al. Effects of cerium doping on the mechanical properties and energy-releasing behavior of high-entropy alloys [J]. Materials, 2022, 15(20): 7332. DOI: 10.3390/ma15207332. [62] MA Y S, HE J Y, ZHOU L, et al. Mechanical properties and impact energy release characteristics of Al0.5NbZrTi1.5Ta0.8Ce0.85 high-entropy alloy [J]. Materials Research Express, 2022, 9(11): 116510. DOI: 10.1088/2053-1591/ac9f04. [63] 魏祥赛. Ni-M系高熵合金含能结构材料设计与力学性能 [D]. 大连: 大连理工大学, 2022: 16−73. DOI: 10.26991/d.cnki.gdllu.2022.000524.WEI X S. Design and mechanical properties of Ni-M high entropy alloy energetic structural materials [D]. Dalian: Dalian University of Technology, 2022: 16−73. DOI: 10.26991/d.cnki.gdllu.2022.000524. [64] 高人奎. TiZrHf系高熵合金的冲击动力学特性及反应释能评价 [D]. 沈阳: 沈阳理工大学, 2022: 51−72. DOI: 10.27323/d.cnki.gsgyc.2022.000486.GAO R K. Impact dynamics properties and reaction energy release evaluation of TiZrHf based high entropy alloys [D]. Shenyang: Shenyang Ligong University, 2022: 51−72. DOI: 10.27323/d.cnki.gsgyc.2022.000486. [65] CHEN C, GAO R K, GUO K, et al. Quantitative determination of impact release energy for TiZrHfX0.3 multicomponent materials in vacuum environment [J]. International Communications in Heat and Mass Transfer, 2022, 133: 105958. DOI: 10.1016/j.icheatmasstransfer.2022.105958. [66] TANG W Q, ZHANG K, CHEN T Y, et al. Microstructural evolution and energetic characteristics of TiZrHfTa0.7W0.3 high-entropy alloy under high strain rates and its application in high-velocity penetration [J]. Journal of Materials Science & Technology, 2023, 132: 144–153. DOI: 10.1016/j.jmst.2022.05.043. [67] MONTGOMERY JR H E. Reactive fragment: US3961576 [P]. 1976-06-08. [68] TRUITT R M, NIELSON D B, ASHCROFT B N, et al. Weapons and weapon components incorporating reactive materials: US11512058 [P]. 2006-08-29. [69] WILLIAM J F. Reactive fragrant warhead for enhanced neutralization of mortar, rocket, and missile threats: ONR-SBIR, N04-903 [R]. 2005. [70] REN S Y, ZHANG Q M, WU Q, et al. Influence of impact-induced reaction characteristics of reactive composites on hypervelocity impact resistance [J]. Materials & Design, 2020, 192: 108722. DOI: 10.1016/j.matdes.2020.108722. [71] 郭磊, 王传婷, 何勇, 等. Zr55Cu30Ni5Al10活性破片对间隔防护结构破坏特性研究 [J]. 航天器环境工程, 2020, 37(6): 582–588. DOI: 10.12126/see.2020.06.008.GUO L, WANG C T, HE Y, et al. The failure characteristics of spacing protective structures impacted by Zr55Cu30Ni5Al10 active fragments [J]. Spacecraft Environment Engineering, 2020, 37(6): 582–588. DOI: 10.12126/see.2020.06.008. [72] 陈海华, 张先锋, 熊玮, 等. WFeNiMo高熵合金动态力学行为及侵彻性能研究 [J]. 力学学报, 2020, 52(5): 1443–1453. DOI: 10.6052/0459-1879-20-166.CHEN H H, ZHANG X F, XIONG W, et al. Dynamic mechanical behavior and penetration performance of WFeNiMo high-entropy alloy [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1443–1453. DOI: 10.6052/0459-1879-20-166. [73] 杨林, 于述贤, 范群波. Zr77.1Cu13Ni9.9非晶合金破片侵彻LY12铝合金及TC4钛合金靶板毁伤后效及机理对比研究 [J]. 北京理工大学学报, 2023, 43(4): 417–428. DOI: 10.15918/j.tbit1001-0645.2022.092.YANG L, YU S X, FAN Q B. Damage effect and mechanism of Zr77.1Cu13Ni9.9 bulk metallic glasses fragment penetrating LY12 aluminum alloy and TC4 titanium alloy target plate [J]. Transactions of Beijing Institute of Technology, 2023, 43(4): 417–428. DOI: 10.15918/j.tbit1001-0645.2022.092. [74] LEHR H F, WOLLMAN E, KOERBER G. Experiments with jacketed rods of high fineness ratio [J]. International Journal of Impact Engineering, 1995, 17(4/5/6): 517–526. DOI: 10.1016/0734-743x(95)99876-s. [75] BACKMAN M E. Terminal ballistics: AD-A021 833 [R]. China Lake, California: Naval Weapons Center, 1976. [76] CHEN X W, WEI L M, LI J C. Experimental research on the long rod penetration of tungsten-fiber/Zr-based metallic glass matrix composite into Q235 steel target [J]. International Journal of Impact Engineering, 2015, 79: 102–116. DOI: 10.1016/j.ijimpeng.2014.11.007. [77] RONG G, HUANG D W, YANG M C. Penetrating behaviors of Zr-based metallic glass composite rods reinforced by tungsten fibers [J]. Theoretical and Applied Fracture Mechanics, 2012, 58(1): 21–27. DOI: 10.1016/j.tafmec.2012.02.003. [78] 张明星, 黄晓霞. 钨合金穿甲弹芯材料强化技术及材料技术国外研究分析 [J]. 四川兵工学报, 2015, 36(12): 114–117. DOI: 10.11809/scbgxb2015.12.028.ZHANG M X, HUANG X X. Foreign research and analysis on strengthening technology and material technology of tungsten alloy piercing projectile [J]. Journal of Ordnance Equipment Engineering, 2015, 36(12): 114–117. DOI: 10.11809/scbgxb2015.12.028. [79] 荣光, 黄德武. 钨纤维复合材料穿甲弹芯侵彻时的自锐现象 [J]. 爆炸与冲击, 2009, 29(4): 351–355. DOI: 10.11883/1001-1455(2009)04-0351-05.RONG G, HUANG D W. Self-sharpening phenomena of tungsten fiber composite material penetrators during penetration [J]. Explosion and Shock Waves, 2009, 29(4): 351–355. DOI: 10.11883/1001-1455(2009)04-0351-05. [80] 杜忠华, 杜成鑫, 朱正旺, 等. 钨丝/锆基非晶复合材料长杆体弹芯穿甲实验研究 [J]. 稀有金属材料与工程, 2016, 45(5): 1308–1313.DU Z H, DU C X, ZHU Z W, et al. An experimental study on perforation behavior of pole penetrator prepared from WF/Zr-based bulk metallic glass matrix composite [J]. Rare Metal Materials and Engineering, 2016, 45(5): 1308–1313. [81] 陈小伟, 李继承, 张方举, 等. 钨纤维增强金属玻璃复合材料弹穿甲钢靶的实验研究 [J]. 爆炸与冲击, 2012, 32(4): 346–354. DOI: 10.11883/1001-1455(2012)04-0346-09.CHEN X W, LI J C, ZHANG F J, et al. Experimental research on the penetration of tungsten-fiber/metallic glass-matrix composite material penetrator into steel target [J]. Explosion and Shock Waves, 2012, 32(4): 346–354. DOI: 10.11883/1001-1455(2012)04-0346-09. [82] 杜忠华, 杜成鑫, 朱正旺, 等. 分段结构的钨丝/锆基非晶复合材料弹芯穿甲实验研究 [J]. 稀有金属材料与工程, 2016, 45(9): 2359–2365.DU Z H, DU C X, ZHU Z W, et al. An experimental study on perforation behavior of segmented Wf/Zr-based bulk metallic glass matrix composite [J]. Rare Metal Materials and Engineering, 2016, 45(9): 2359–2365. [83] 杜成鑫, 杜忠华, 朱正旺. 着靶速度和钨丝直径对钨丝/锆基非晶复合材料弹芯侵彻性能的影响 [J]. 稀有金属材料与工程, 2017, 46(6): 1632–1637.DU C X, DU Z H, ZHU Z W. Effect of impact velocity and diameter of tungsten fiber on penetration ability of Wf/Zr-based metallic glass composite penetrator [J]. Rare Metal Materials and Engineering, 2017, 46(6): 1632–1637. [84] 杜成鑫, 杜忠华, 朱正旺. 钨丝直径对锆基复合非晶材料穿甲性能的影响 [J]. 稀有金属材料与工程, 2017, 46(4): 1080–1085.DU C X, DU Z H, ZHU Z W. Effect of tungsten fiber diameter on penetration ability of Zr-based metallic glass composites [J]. Rare Metal Materials and Engineering, 2017, 46(4): 1080–1085. [85] JIANG F, CHEN G, WANG Z H, et al. Mechanical properties of tungsten fiber reinforced (Zr41.2Ti13.8Cu12.5Ni10Be22.5)100- x Nb x bulk metallic glass composites [J]. Rare Metal Materials and Engineering, 2011, 40(2): 206–208. DOI: 10.1016/S1875-5372(11)60016-7. [86] 杜成鑫. Wf/Zr基非晶复合材料杆弹准细观侵彻机理及优化设计 [D]. 南京: 南京理工大学, 2020: 39−62. DOI: 10.27241/d.cnki.gnjgu.2020.000070.DU C X. Research on penetration mechanism and optimization design of Wf/Zr-based bulk metallic glass matrix composite rod [D]. Nanjing: Nanjing University of Science & Technology, 2020: 39−62. DOI: 10.27241/d.cnki.gnjgu.2020.000070. [87] SORENSEN B R, KIMSEY K D, SILSBY G F, et al. High velocity penetration of steel targets [J]. International Journal of Impact Engineering, 1991, 11(1): 107–119. DOI: 10.1016/0734-743X(91)90034-D. [88] 林琨富, 张先锋, 陈海华, 等. Hf基非晶合金夹芯结构长杆弹的侵彻行为 [J]. 爆炸与冲击, 2021, 41(2): 023301. DOI: 10.11883/bzycj-2020-0181.LIN K F, ZHANG X F, CHEN H H, et al. Penetration behaviors of Hf-based amorphous alloy jacketed rods [J]. Explosion and Shock Waves, 2021, 41(2): 023301. DOI: 10.11883/bzycj-2020-0181. [89] HOU X W, ZHANG X F, XIONG W, et al. Study on energy release characteristics and penetration effects to concrete targets of Hf-based amorphous alloys [J]. Journal of Non-Crystalline Solids, 2022, 581: 121438. DOI: 10.1016/j.jnoncrysol.2022.121438. [90] HOU X W, ZHANG X F, LIU C, et al. Effects of annealing temperatures on mechanical behavior and penetration characteristics of FeNiCoCr high-entropy alloys [J]. Metals, 2022, 12(11): 1885. DOI: 10.3390/met12111885. [91] 陈海华, 张先锋, 赵文杰, 等. W25Fe25Ni25Mo25高熵合金高速侵彻细观结构演化特性 [J]. 力学学报, 2022, 54(8): 2140–2151. DOI: 10.6052/0459-1879-22-128.CHEN H H, ZHANG X F, ZHAO W J, et al. Effect of microstructure on flow behavior during penetration of W25Fe25Ni25Mo25 high-entropy alloy projectile [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2140–2151. DOI: 10.6052/0459-1879-22-128. [92] 赵腾, 罗虹, 贾万明, 等. 药型罩材料技术基本要素探讨 [J]. 兵器材料科学与工程, 2007, 30(5): 77–82. DOI: 10.3969/j.issn.1004-244X.2007.05.022.ZHAO T, LUO H, JIA W M, et al. Discussion on the basic elements of shaped charge liner material [J]. Ordnance Material Science and Engineering, 2007, 30(5): 77–82. DOI: 10.3969/j.issn.1004-244X.2007.05.022. [93] 张雪朋. 活性射流作用钢靶侵彻爆炸联合毁伤效应研究 [D]. 北京: 北京理工大学, 2016: 1−6.ZHANG X P. Research on penetration and blast combined damage effects of reactive material jet against steel target [D]. Beijing: Beijing Institute of Technology, 2016: 1−6. [94] 张雪朋, 肖建光, 余庆波, 等. 活性药型罩聚能装药破甲后效超压特性 [J]. 兵工学报, 2016, 37(8): 1388–1394. DOI: 10.3969/j.issn.1000-1093.2016.08.007.ZHANG X P, XIAO J G, YU Q B, et al. Armor penetration aftereffect overpressure produced by reactive material liner shaped charge [J]. Acta Armamentarii, 2016, 37(8): 1388–1394. DOI: 10.3969/j.issn.1000-1093.2016.08.007. [95] WALTERS W P, KECSKES L J, PRITCHETT J E. Investigation of a bulk metallic glass as a shaped charge liner material [R]. Aberdeen Proving Ground: Army Research Laboratory, 2006. [96] SHI J, HUANG Z X, ZU X D, et al. Experimental and numerical investigation of jet performance based on Johnson-Cook model of liner material [J]. International Journal of Impact Engineering, 2022, 170: 104343. DOI: 10.1016/j.ijimpeng.2022.104343. [97] SHI J, HUANG Z X, ZU X D, et al. Experimental investigation of Zr-Based amorphous alloy as a shaped charge liner [J]. Propellants, Explosives, Pyrotechnics, 2022, 47(11): e202200063. DOI: 10.1002/prep.202200063. [98] CUI P, GAO X B, XU J Q, et al. Simulation and experimental study on jet velocity of Zr-based amorphous alloy liner [J]. Metals, 2022, 12(6): 978. DOI: 10.3390/met12060978. [99] 周秉文, 孟凡迪, 张全孝, 等. 铜基非晶合金的动态性能及杆式射流仿真研究 [J]. 兵器材料科学与工程, 2020, 43(6): 1–5. DOI: 10.14024/j.cnki.1004-244x.20200612.001.ZHOU B W, MENG F D, ZHANG Q X, et al. Dynamic properties and rod jet simulation of copper-based bulk metallic glasses [J]. Ordnance Material Science and Engineering, 2020, 43(6): 1–5. DOI: 10.14024/j.cnki.1004-244x.20200612.001. [100] 鄢阿敏, 乔禹, 戴兰宏. 高熵合金药型罩射流成型与稳定性 [J]. 力学学报, 2022, 54(8): 2119–2130. DOI: 10.6052/0459-1879-22-274.YAN A M, QIAO Y, DAI L H. Formation and stability of shaped charge liner jet of CrMnFeCoNi high-entropy alloy [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2119–2130. DOI: 10.6052/0459-1879-22-274. [101] 郑哲敏. 聚能射流的稳定性问题 [M]// 郑哲敏. 郑哲敏文集. 北京: 科学出版社, 2004: 12. [102] 郑哲敏. 关于射流侵彻的几个问题 [J]. 兵工学报, 1980(1): 13–22.ZHENG Z M. Several problems on jet penetration [J]. Acta Armamentarii, 1980(1): 13–22. [103] CHOU P C, CARLEONE J. The stability of shaped-charge jets [J]. Journal of Applied Physics, 1977, 48(10): 4187–4195. DOI: 10.1063/1.323456. [104] CUI P, SHI D M, XU J Q, et al. Investigation of explosion simulation on jet forming of ZrCuNiAlAg amorphous alloy liner with eccentric sub-hemisphere structure [J]. IOP Conference Series: Materials Science and Engineering, 2020, 964: 012020. DOI: 10.1088/1757-899x/964/1/012020. [105] CUI P, WANG D S, SHI D M, et al. Investigation of penetration performance of Zr-based amorphous alloy liner compared with copper [J]. Materials, 2020, 13(4): 912. DOI: 10.3390/ma13040912. [106] CUI P, SHI D M, ZHANG Y L, et al. Numerical simulation and experimental study on jet forming and penetration performance of Zr-based amorphous alloy liner [J]. Engineering Letters, 2021, 29(1): 151–157. [107] CUI P, SHI D M, XU J Q, et al. Numerical simulation on jet forming and penetration performance of several amorphous energetic alloy liner with typical structures [J]. Journal of Physics: Conference Series, 2021, 1948: 012186. DOI: 10.1088/1742-6596/1948/1/012186. [108] 芦永进, 梁增友, 邓德志, 等. 铜基非晶合金双层药型罩射流形成及侵彻性能 [J]. 火炮发射与控制学报, 2022, 43(1): 14–20, 28. DOI: 10.19323/j.issn.1673-6524.2022.01.003.LU Y J, LIANG Z Y, DENG D Z, et al. Jet formation and penetration performance of a Cu-based amorphous alloy double-layer charge liner [J]. Journal of Gun Launch & Control, 2022, 43(1): 14–20, 28. DOI: 10.19323/j.issn.1673-6524.2022.01.003. [109] HAN J L, CHEN X, DU Z H, et al. Design and penetration of a new W-particle/Zr-based amorphous alloy composite liner [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(7): 364. DOI: 10.1007/s40430-020-02359-6. [110] LÜ J X, ZHANG J L, SHEK C. Corrosion of glassy (Ni8Nb5)99.5Sb0.5 alloy and stability of passive film [J]. Rare Metal Materials and Engineering, 2013, 42(3): 447–451. DOI: 10.1016/S1875-5372(13)60045-4. [111] ZHAO Z Y, LIU J X, GUO W Q, et al. Effect of Zn and Ni added in W-Cu alloy on penetration performance and penetration mechanism of shaped charge liner [J]. International Journal of Refractory Metals and Hard Materials, 2016, 54: 90–97. DOI: 10.1016/j.ijrmhm.2015.07.022. [112] BAI X, LIU J X, LI S K, et al. Effect of interaction mechanism between jet and target on penetration performance of shaped charge liner [J]. Materials Science and Engineering: A, 2012, 553: 142–148. DOI: 10.1016/j.msea.2012.06.003. [113] CHEN J, LIU T W, CAO F H, et al. Deformation behavior and microstructure evolution of CoCrNi medium-entropy alloy shaped charge liners [J]. Metals, 2022, 12(5): 811. DOI: 10.3390/met12050811. [114] GUO W Q, LIU J X, XIAO Y, et al. Comparison of penetration performance and penetration mechanism of W-Cu shaped charge liner against three kinds of target: pure copper, carbon steel and Ti-6Al-4V alloy [J]. International Journal of Refractory Metals and Hard Materials, 2016, 60: 147–153. DOI: 10.1016/j.ijrmhm.2016.07.015. [115] ZHANG S C, JIANG Z H, LI H B, et al. Precipitation behavior and phase transformation mechanism of super austenitic stainless steel S32654 during isothermal aging [J]. Materials Characterization, 2018, 137: 244–255. DOI: 10.1016/j.matchar.2018.01.040.