基于电磁感应原理的冲击试验技术

陈旭 李子祺 吴亚东 王靖博 李玉龙 郭亚洲

陈旭, 李子祺, 吴亚东, 王靖博, 李玉龙, 郭亚洲. 基于电磁感应原理的冲击试验技术[J]. 爆炸与冲击, 2024, 44(11): 114101. doi: 10.11883/bzycj-2023-0195
引用本文: 陈旭, 李子祺, 吴亚东, 王靖博, 李玉龙, 郭亚洲. 基于电磁感应原理的冲击试验技术[J]. 爆炸与冲击, 2024, 44(11): 114101. doi: 10.11883/bzycj-2023-0195
CHEN Xu, LI Ziqi, WU Yadong, WANG Jingbo, LI Yulong, GUO Yazhou. Impact testing technique based on the principle of electromagnetic induction[J]. Explosion And Shock Waves, 2024, 44(11): 114101. doi: 10.11883/bzycj-2023-0195
Citation: CHEN Xu, LI Ziqi, WU Yadong, WANG Jingbo, LI Yulong, GUO Yazhou. Impact testing technique based on the principle of electromagnetic induction[J]. Explosion And Shock Waves, 2024, 44(11): 114101. doi: 10.11883/bzycj-2023-0195

基于电磁感应原理的冲击试验技术

doi: 10.11883/bzycj-2023-0195
详细信息
    作者简介:

    陈 旭(1997- ),男,硕士研究生,iamcxchenxu@163.com

    通讯作者:

    郭亚洲(1981- ),男,博士,教授,guoyazhou@nwpu.edu.cn

  • 中图分类号: O389

Impact testing technique based on the principle of electromagnetic induction

  • 摘要: 基于电磁感应的基本原理,构建了一种由电磁力驱动产生高幅值长脉宽加速度载荷的冲击试验装置,弥补了现阶段地面冲击试验技术的缺陷。使用电磁Hopkinson杆进行了加速度冲击试验,得到了应力和加速度载荷。根据一维应力波原理,推导出细长杆中加速度与应力之间的关系式,计算结果表明试验值和理论值吻合较好,验证了试验方法的准确性。使用COMSOL有限元软件对电磁Hopkinson杆加速度冲击试验进行了数值模拟,模拟结果与试验结果一致性较好,验证了数值模型和方法的准确性。基于此有限元模型,构建了产生高幅值长脉宽加速度载荷的冲击试验装置,并对该装置进行了不同电压和电容下的数值模拟。结果表明,提出的试验装置能够产生长脉宽高幅值的加速度过载环境,且电容电压越大则加速度幅值越大,电容值越大加速度脉宽越宽。通过调控装置中的电路参数,可产生不同幅值和脉宽的加速度载荷。
  • 图  1  电磁驱动系统基本工作原理图[14]

    Figure  1.  Schematic Diagram of electromagnetic system[14]

    图  2  等效RLC电路

    Figure  2.  Equivalent RLC circuit

    图  3  放电线圈与次级线圈结构图[16]

    Figure  3.  Structure of main coil and secondary coil[16]

    图  4  次级线圈受力示意图

    Figure  4.  Force diagram of secondary coil

    图  5  电磁Hopkinson杆加速度冲击装置图

    Figure  5.  Diagram of electromagnetic Hopkinson bar system

    图  6  电压为700和1400 V应力时间曲线

    Figure  6.  Stress-time curve with voltage at 700 and 1400 V

    图  7  电压700和1400 V加速度时间曲线

    Figure  7.  Acceleration-time curve with voltage at 700 and 1400 V

    图  8  加载后次级线圈图和转换接头

    Figure  8.  Secondary coil and adapter after impact

    图  9  电压为700和1400 V理论与试验加速度结果对比

    Figure  9.  Comparison of acceleration between theory and test with voltage at 700 and 1400 V

    图  10  电磁Hopkinson杆有限元模型图

    Figure  10.  Finite element model of electromagnetic Hopkinson bar

    图  11  电压为700和1400 V模拟和试验应力结果对比

    Figure  11.  Comparison of stress between simulation and test with voltage at 700 and 1400 V

    图  12  电压700和1400 V模拟与试验结果对比

    Figure  12.  Comparison of results between simulation and test with voltage at 700 and 1400 V

    图  13  冲击试验装置剖面

    Figure  13.  Cross section of impact test device

    图  14  冲击试验装置加速度值

    Figure  14.  Acceleration curve of impact test device

    图  15  电压值对加速度的影响

    Figure  15.  Effect of voltage on acceleration

    图  16  加速度峰值与电压的关系

    Figure  16.  Relationship between peak of acceleration and voltage

    图  17  电容值对加速度的影响

    Figure  17.  Effect of Capacitance on acceleration

    图  18  电容值与电流的关系

    Figure  18.  Relationship between capacitance and electric current

    表  1  各部件材料参数[18-19]

    Table  1.   Parameters of each part[18-19]

    部件 材料 密度/(kg·m−3) 弹性模量/GPa 泊松比 相对磁导率 电导率/(S·m−1) 相对介电常数
    主动线圈 紫铜 8960 110 0.35 1 6.0×107 1
    次级线圈 无氧铜 8940 105 0.33 1 5.8×107 1
    波导杆 钛合金 4400 110 0.34 1 7.4×105 1
    空气 1 0 1
    下载: 导出CSV

    表  2  模拟时主要部件最大应力

    Table  2.   Max stress of each part in simulation

    部件 材料 屈服强度/
    MPa
    模拟最大
    应力/MPa
    主动线圈 紫铜 76 58
    次级线圈 无氧铜 300 200
    垫块 1300 750
    加载杆 TC4钛合金 900 735
    连接与放大装置 TC4钛合金 900 845
    下载: 导出CSV
  • [1] 金恂叔. 航天器动力学环境试验的发展概况和趋势 [J]. 航天器环境工程, 2003, 30(2): 15–21. DOI: 10.3969/j.issn.1673-1379.2003.02.003.

    JIN X S. The development status and trends of spacecraft dynamic environment testing [J]. Spacecraft Environment Engineering, 2003, 30(2): 15–21. DOI: 10.3969/j.issn.1673-1379.2003.02.003.
    [2] 丁继锋, 赵欣, 韩增尧. 航天器火工冲击技术研究进展 [J]. 宇航学报, 2014, 35(12): 1339–1349. DOI: 10.3873/j.issn.1000-1328.2014.12.001.

    DING J F, ZHAO X, HAN Z Y. Research development of spacecraft pyroshock technique [J]. Journal of Astronautics, 2014, 35(12): 1339–1349. DOI: 10.3873/j.issn.1000-1328.2014.12.001.
    [3] WU Z B, MA T H, ZHANG Y B, et al. Ground simulation test of 2D dynamic overload environment of fuze launching [J]. Shock and Vibration, 2020, 2020: 2858640. DOI: 10.1155/2020/2858640.
    [4] 朱广生, 刘瑞朝, 周松柏, 等. 基于爆炸激波管的火箭级间段强度考核和分离试验研究 [J]. 航空学报, 2015, 36(7): 2207–2213. DOI: 10.7527/S1000-6893.2015.0041.

    ZHU G S, LIU R C, ZHOU S B, et al. Experimental research of strength check and stage separation for a rocket’s stage section based on a blast simulator [J]. Acta Aeronauticaet Astronautica Sinica, 2015, 36(7): 2207–2213. DOI: 10.7527/S1000-6893.2015.0041.
    [5] 张学舜, 沈瑞琪. 火工品动态着靶模拟仿真技术研究 [J]. 火工品, 2003(4): 1–4. DOI: 10.3969/j.issn.1003-1480.2003.04.001.

    ZHANG X S, SHEN R Q. Study on dynamic touch-target analog simulation technique for initiating explosive devices [J]. Initiators & Pyrotechnics, 2003(4): 1–4. DOI: 10.3969/j.issn.1003-1480.2003.04.001.
    [6] DAI K R, WANG X F, YI F, et al. Triboelectric nanogenerators as self-powered acceleration sensor under high-g impact [J]. Nano Energy, 2018, 45: 84–93. DOI: 10.1016/j.nanoen.2017.12.022.
    [7] XU F J, MA T H. Modeling and studying acceleration-induced effects of piezoelectric pressure sensors using system identification theory [J]. Sensors, 2019, 19(5): 1052. DOI: 10.3390/s19051052.
    [8] 张伟, 沈瑞琪, 叶迎华, 等. 落球碰撞试验模拟火工品过载特性研究 [J]. 火工品, 2012(3): 4. DOI: 10.3969/j.issn.1003-1480.2012.03.002.

    ZHANG W, SHEN R Q, YE Y H, et al. Research on the overloading characteristics of initiator simulated by falling ball impacting experiment [J]. Initiators & Pyrotechnics, 2012(3): 4. DOI: 10.3969/j.issn.1003-1480.2012.03.002.
    [9] DUAN Z Y, LUO T H, TANG D Y, et al. Potential analysis of high-g shock experiment technology for heavy specimens based on air cannon [J]. Shock and Vibration, 2020: 5439785. DOI: 10.1155/2020/5439785.
    [10] TANG T, MA S J, LI F Y, et al. Research on overload signal of new impact body based on air cannon test and simulation [J]. Journal of Physics: Conference Series, 2021, 2029: 012008. DOI: 10.1088/1742-6596/2029/1/012008.
    [11] 杨华. 高过载加速度试验装置结构设计与分析 [D]. 南京: 南京理工大学, 2012: 1–6.
    [12] FOSTER J T, FREW D J, FORRESTAL M J, et al. Shock testing accelerometers with a Hopkinson pressure bar [J]. International Journal of Impact Engineering, 2012, 46: 56–61. DOI: 10.1016/j.ijimpeng.2012.02.006.
    [13] SHI Y B, ZHANG H, TANG J, et al. Anti-overload of a high-g acceleration sensor [J]. Advanced Materials Research, 2011, 291: 3103–3107. DOI: 10.4028/www.scientific.net/AMR.291-294.3103.
    [14] NIE H L, SUO T, WU B B, et al. A versatile split Hopkinson pressure bar using electromagnetic loading [J]. International Journal of Impact Engineering, 2018, 116: 94–104. DOI: 10.1016/j.ijimpeng.2018.02.002.
    [15] GUO Y Z, DU B, LIU H F, et al. Electromagnetic Hopkinson bar: a powerful scientific instrument to study mechanical behavior of materials at high strain rates [J]. Review of Scientific Instruments, 2020, 91(8): 081501. DOI: 10.1063/5.0006084.
    [16] 王维斌, 索涛, 郭亚洲, 等. 电磁霍普金森杆实验技术及研究进展 [J]. 力学进展, 2021, 51(4): 729–754. DOI: 10.6052/1000-0992-20-024.

    WANG W B, SUO T, GUO Y Z, et al. Experimental technique and research progress of electromagnetic Hopkinson bar [J]. Advances in Mechanics, 2021, 51(4): 729–754. DOI: 10.6052/1000-0992-20-024.
    [17] TAKATSU N, KATO M, SATO K, et al. High-speed forming of metal sheets by electromagnetic force [J]. JSME International Journal. Ser. 3, Vibration, Control Engineering, Engineering for Industry, 1988, 31(1): 142–148. DOI: 10.1299/jsmec1988.31.142.
    [18] 钟卫佳. 铜加工技术实用手册 [M]: 北京: 冶金工业出版社, 2007: 73–119.
    [19] 刘旭阳. TC4钛合金动态本构关系研究 [D]. 南京: 南京航空航天大学, 2010: 7–28.
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  48
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-25
  • 修回日期:  2024-03-03
  • 网络出版日期:  2024-06-24
  • 刊出日期:  2024-11-15

目录

    /

    返回文章
    返回