考虑晶体取向的Al0.3CoCrFeNi高熵合金动态力学性能研究

陈嘉琳 李述涛 陈叶青

陈嘉琳, 李述涛, 陈叶青. 考虑晶体取向的Al0.3CoCrFeNi高熵合金动态力学性能研究[J]. 爆炸与冲击, 2024, 44(3): 031401. doi: 10.11883/bzycj-2023-0324
引用本文: 陈嘉琳, 李述涛, 陈叶青. 考虑晶体取向的Al0.3CoCrFeNi高熵合金动态力学性能研究[J]. 爆炸与冲击, 2024, 44(3): 031401. doi: 10.11883/bzycj-2023-0324
CHEN Jialin, LI Shutao, CHEN Yeqing. A study on dynamic mechanical properties of Al0.3CoCrFeNi high-entropy alloy considering crystal orientation[J]. Explosion And Shock Waves, 2024, 44(3): 031401. doi: 10.11883/bzycj-2023-0324
Citation: CHEN Jialin, LI Shutao, CHEN Yeqing. A study on dynamic mechanical properties of Al0.3CoCrFeNi high-entropy alloy considering crystal orientation[J]. Explosion And Shock Waves, 2024, 44(3): 031401. doi: 10.11883/bzycj-2023-0324

考虑晶体取向的Al0.3CoCrFeNi高熵合金动态力学性能研究

doi: 10.11883/bzycj-2023-0324
详细信息
    作者简介:

    陈嘉琳(1997- ),男,博士研究生,cjl0321@yeah.net

    通讯作者:

    李述涛(1984- ),男,博士,高级工程师,list16@tsinghua.org.cn

  • 中图分类号: O347.3

A study on dynamic mechanical properties of Al0.3CoCrFeNi high-entropy alloy considering crystal orientation

  • 摘要: 鉴于高熵合金材料(high-entropy alloy, HEA)在高应变率动态响应下呈现不同的破坏模式及力学性能,其潜在机理从宏观角度已不能够完全解释,需从微观角度研究其动态响应过程中的原子结构变化、位错分布变化、演变机理及变形机制,为优化HEA防护材料的加工工艺、制备方法等提供参考。利用分子动力学模拟的方法,设计了[100]、[110]和[111]等3种取向结构的Al0.3CoCrFeNi高熵合金在不同应变率下的压缩、拉伸及冲击试验,分析了动态响应过程中原子结构变化、位错分布变化、演变机理及变形机制。压缩试验中:[110]取向结构的Al0.3CoCrFeNi高熵合金的屈服强度最高,[111]的次之,[100]的最低;[100]取向结构的Al0.3CoCrFeNi高熵合金主要的变形机制为孪晶变形,[110]的为滑移变形,[111]的为位错变形。拉伸试验中:[111]取向结构的Al0.3CoCrFeNi高熵合金的屈服强度最高,[100]的次之,[110]的最低;[100]取向结构Al0.3CoCrFeNi高熵合金拉伸过程中孪晶结构较多,[110]取向结构的Al0.3CoCrFeNi高熵合金产生较规则的密排六方结构滑移面,[111]取向结构的Al0.3CoCrFeNi高熵合金不会产生任何滑移面。随着应变率的升高,3种取向结构的Al0.3CoCrFeNi高熵合金压缩和拉伸屈服强度均大幅度提高,对应伸长量增大。较低应变率(1×109 s−1)下的塑性变形机制主要为滑移变形,但滑移系较少;中应变率(1×1010 s−1)下的塑性变形机制是以滑移为主的变形机制,但滑移系较多;高应变率(1×1011 s−1)下的塑性变形机制是由原子排列无序化的非晶原子诱导的变形。[110]取向结构的Al0.3CoCrFeNi高熵合金的抗冲击性能最好,与其具有最高的屈服强度,并且在屈服结束阶段也能保持最高的应力有关。
  • 图  1  Al0.3CoCrFeNi高熵合金模型

    Figure  1.  Models for Al0.3CoCrFeNi high-entropy alloy

    图  2  刚性球冲击Al0.3CoCrFeNi纳米靶板模型

    Figure  2.  A model for a rigid ball impacting an Al0.3CoCrFeNi nano-target

    图  3  不同取向结构Al0.3CoCrFeNi高熵合金压缩及拉伸应力-应变曲线

    Figure  3.  Compressive and tensile stress-strain curves of Al0.3CoCrFeNi high-entropy alloys with different orientation structures

    图  4  不同应变率下的Al0.3CoCrFeNi高熵合金压缩及拉伸应力-应变曲线

    Figure  4.  Compressive and tensile stress-strain curves of Al0.3CoCrFeNi high-entropy alloys at different strain rates

    图  5  [100]取向结构Al0.3CoCrFeNi高熵合金的压缩模拟应力-应变曲线

    Figure  5.  Compression simulation stress-strain curve of Al0.3CoCrFeNi high-entropy alloy with [100] orientation structure

    图  6  [100]取向结构Al0.3CoCrFeNi高熵合金的压缩模拟晶体结构演变

    Figure  6.  Simulated crystal structure evolution of Al0.3CoCrFeNi high-entropy alloy with [100] orientation structure during compression

    图  7  [100]取向结构Al0.3CoCrFeNi高熵合金的压缩模拟位错分布

    Figure  7.  Simulated dislocation distribution of Al0.3CoCrFeNi high-entropy alloy with [100] orientation structure during compression

    图  8  孪晶和位错现象的放大图

    Figure  8.  Amplification diagrams of twinning and dislocation phenomenon

    图  9  HCP原子结构合并及湮灭过程

    Figure  9.  Atom merging and annihilation process of HCP structure

    图  10  [110]取向结构Al0.3CoCrFeNi高熵合金的压缩应力-应变曲线模拟结果

    Figure  10.  Simulated stress-strain curve of [110]-oriented Al0.3CoCrFeNi high-entropy alloy under compression

    图  11  [110]取向结构Al0.3CoCrFeNi高熵合金的压缩晶体结构演变模拟结果及实验结果[46]

    Figure  11.  Simulated crystal structure evolution of [110]-oriented Al0.3CoCrFeNi high-entropy alloy and experimental result[46]

    图  12  [110]取向结构Al0.3CoCrFeNi高熵合金的压缩位错分布的模拟结果

    Figure  12.  Simulated dislocation distributions of [110]-oriented Al0.3CoCrFeNi high-entropy alloy under compression

    图  13  [111]取向结构Al0.3CoCrFeNi高熵合金的压缩应力-应变曲线模拟结果

    Figure  13.  Simulated stress-strain curve of [111]-oriented Al0.3CoCrFeNi high-entropy alloy under compression

    图  14  [111]取向结构Al0.3CoCrFeNi高熵合金的压缩晶体结构演变的模拟结果

    Figure  14.  Simulated crystal structure evolutions of [111]-oriented Al0.3CoCrFeNi high-entropy alloy under compression

    图  15  [111]取向结构Al0.3CoCrFeNi高熵合金的压缩位错分布模拟结果

    Figure  15.  Simulated dislocation distributions of [111]-oriented Al0.3CoCrFeNi high-entropy alloy under compression

    图  16  [100]取向结构Al0.3CoCrFeNi高熵合金压缩过程中原子晶体结构及位错分布模拟结果融合对比

    Figure  16.  Comparison of simulated atomic crystal structures and dislocation distribution fusion contrast of [100]-oriented Al0.3CoCrFeNi high-entropy alloy under compression

    图  17  [110]取向结构Al0.3CoCrFeNi高熵合金压缩过程中原子晶体结构及位错分布模拟结果融合对比

    Figure  17.  Comparison of simulated atomic crystal structures and dislocation distribution fusion contrast of [110]-oriented Al0.3CoCrFeNi high-entropy alloy under compression

    图  18  [111]取向结构Al0.3CoCrFeNi高熵合金的压缩模拟原子晶体结构及位错分布融合对比

    Figure  18.  Comparison of simulated atomic crystal structures and dislocation distribution fusion contrast of [111]-oriented Al0.3CoCrFeNi high-entropy alloy under compression

    图  19  [100]取向结构Al0.3CoCrFeNi高熵合金的拉伸模拟应力-应变曲线

    Figure  19.  Simulated stress-strain diagram of [100]-oriented Al0.3CoCrFeNi high-entropy alloy under tension

    图  20  [100]取向结构Al0.3CoCrFeNi高熵合金的拉伸模拟晶体结构演变

    Figure  20.  Simulated crystal structure evolution diagram of [100]-oriented Al0.3CoCrFeNi high-entropy alloy under tension

    图  21  [110]取向结构Al0.3CoCrFeNi高熵合金的拉伸模拟应力-应变曲线

    Figure  21.  Simulated stress-strain curve of [110]-oriented Al0.3CoCrFeNi high-entropy alloy under tension

    图  22  [110]取向结构Al0.3CoCrFeNi高熵合金的拉伸模拟晶体结构演变

    Figure  22.  Simulated crystal structure evolution of [110]-oriented Al0.3CoCrFeNi high-entropy alloy under tension

    图  23  [111]取向结构Al0.3CoCrFeNi高熵合金的拉伸模拟应力-应变曲线

    Figure  23.  Tension simulation stress-strain diagram of [111]-oriented Al0.3CoCrFeNi high-entropy alloy

    图  24  [111]取向结构Al0.3CoCrFeNi高熵合金的拉伸模拟晶体结构演变

    Figure  24.  Simulated crystal structure evolution of [111]-oriented Al0.3CoCrFeNi high-entropy alloy under tension

    图  25  [100]取向结构Al0.3CoCrFeNi高熵合金的拉伸模拟原子晶体结构及位错分布融合对比

    Figure  25.  Tension simulation of atomic crystal structure and dislocation distribution fusion contrast diagram of [100]-oriented Al0.3CoCrFeNi high-entropy alloy

    图  26  [110]取向结构Al0.3CoCrFeNi高熵合金的拉伸模拟原子晶体结构及位错分布融合对比

    Figure  26.  Tension simulation of atomic crystal structure and dislocation distribution fusion contrast diagram of [110]-oriented Al0.3CoCrFeNi high-entropy alloy

    图  27  [111]取向结构Al0.3CoCrFeNi高熵合金的拉伸模拟原子晶体结构及位错分布融合对比

    Figure  27.  Tension simulation of atomic crystal structure and dislocation distribution fusion contrast diagram of [111]-oriented Al0.3CoCrFeNi high-entropy alloy

    图  28  不同应变率下[110]取向结构Al0.3CoCrFeNi高熵合金压缩15.0%的原子晶体结构模拟结果

    Figure  28.  Simulated atomic crystal structures of [110]-oriented Al0.3CoCrFeNi high-entropy alloy compressed by 15.0% at different strain rates

    图  29  不同应变率下[110]取向结构Al0.3CoCrFeNi高熵合金压缩15.0%的位错分布模拟结果

    Figure  29.  Simulated dislocation distributions of [110]-oriented Al0.3CoCrFeNi high-entropy alloy compressed by 15.0% at different strain rates

    图  30  不同应变率下[110]取向结构Al0.3CoCrFeNi高熵合金压缩25.0%的原子晶体结构模拟结果

    Figure  30.  Simulated atomic crystal structures of [110]-oriented Al0.3CoCrFeNi high-entropy alloy compressed by 25.0% at different strain rates

    图  31  不同应变率下[110]取向结构Al0.3CoCrFeNi高熵合金压缩25.0%的位错分布模拟结果

    Figure  31.  Simulated dislocation distributions of [110]-oriented Al0.3CoCrFeNi high-entropy alloy compressed by 25.0%at different strain rates

    图  32  撞击不同取向结构Al0.3CoCrFeNi高熵合金靶板的刚性球剩余速度的变化

    Figure  32.  Residual velocity changes of rigid balls impacting differently-oriented Al0.3CoCrFeNi high-entropy alloy target plates

    图  33  [100]取向结构的Al0.3CoCrFeNi高熵合金靶板在刚性球冲击过程中的晶体结构分布

    Figure  33.  Crystal structure distribution of a [100]-oriented Al0.3CoCrFeNi high-entropy alloy target plate impacted by a rigid ball

    图  34  [110]取向结构的Al0.3CoCrFeNi高熵合金靶板在刚性球冲击过程中的晶体结构分布

    Figure  34.  Crystal structure distribution of a [110]-oriented Al0.3CoCrFeNi HEA target plate impacted by a rigid ball

    图  35  [111]取向结构的Al0.3CoCrFeNi高熵合金靶板在刚性球冲击过程中的晶体结构分布

    Figure  35.  Crystal structure distribution of a [111]-oriented Al0.3CoCrFeNi HEA target plate impacted by a rigid ball

    图  36  不同取向结构Al0.3CoCrFeNi高熵合金靶板在刚性球撞击后的晶体结构及位错分布融合对比

    Figure  36.  Comparison of atomic crystal structure and dislocation distribution fusion of differently-oriented Al0.3CoCrFeNi HEA target plates after impact by a rigid ball

    图  37  刚性球撞击不同取向结构Al0.3CoCrFeNi高熵合金的局部原子温度分布

    Figure  37.  Local atomic temperature distribution of plates of Al0.3CoCrFeNi high entropy alloys with different orientation structures impacted by rigid balls

    表  1  不同原子对之间相互作用的Lennard-Jones参数

    Table  1.   Lennard-Jones parameters of the interactions between different atom pairs

    原子对ε/eVσ
    Al-Co0.04692.578
    Cr-Co0.04662.456
    Fe-Co0.04772.448
    Co-Co0.00432.584
    Ni-Co0.04742.428
    下载: 导出CSV

    表  2  不同取向结构的Al0.3CoCrFeNi高熵合金在压缩及拉伸过程中各个变形阶段临界点的应力和变形量

    Table  2.   The stress and deformation at the critical point of each deformation stage of Al0.3CoCrFeNi HEA with different orientation structures during compressive and tensile processes

    分界点 应力/GPa 应变/%
    压缩 拉伸 压缩 拉伸
    [100] [110] [111] [100] [110] [111] [100] [110] [111] [100] [110] [111]
    弹性变形与屈服阶段分界点 5.38 18.41 16.63 10.28 6.14 10.45 5.5 4.8 5.3 10.0 4.5 5.0
    屈服与塑性变形阶段分界点 1.55 2.43 1.23 3.51 2.30 3.74 8.4 6.2 6.8 12.8 5.6 6.6
    下载: 导出CSV

    表  3  不同应变率下不同取向结构的Al0.3CoCrFeNi高熵合金的屈服应力及应变

    Table  3.   Yield stresses and strains of Al0.3CoCrFeNi high-entropy alloys with different orientation structures at different strain rates

    模拟试验 晶体取向 1×109 s−1 1×1010 s−1 1×1011 s−1
    屈服应力/GPa 应变/% 屈服应力/GPa 应变/% 屈服应力/GPa 应变/%
    压缩 [100] 5.38 5.5 7.34 6.0 33.70 36.0
    [110] 18.41 4.8 31.22 7.1 34.38 13.7
    [111] 16.63 5.3 24.43 7.8 30.11 15.3
    拉伸 [100] 10.28 10.0 11.57 12.2 18.16 20.0
    [110] 6.14 4.5 7.50 4.7 15.19 12.6
    [111] 10.45 5.0 15.19 12.6 20.62 12.2
    下载: 导出CSV
  • [1] CHENG J C, ZHANG S, LIU Q, et al. Ballistic impact experiments and modeling on impact cratering, deformation and damage of 2024-T4 aluminum alloy [J]. International Journal of Mechanical Sciences, 2022, 224: 107312. DOI: 10.1016/j.ijmecsci.2022.107312.
    [2] RANAWEERA P, BAMBACH M R, WEERASINGHE D, et al. Ballistic impact response of monolithic steel and tri-metallic steel-titanium-aluminium armour to nonrigid NATO FMJ M80 projectiles [J]. Thin-Walled Structures, 2023, 182: 110200. DOI: 10.1016/j.tws.2022.110200.
    [3] LI L, ZHANG Q C, LU T J. Ballistic penetration of deforming metallic plates: experimental and numerical investigation [J]. International Journal of Impact Engineering, 2022, 170: 104359. DOI: 10.1016/j.ijimpeng.2022.104359.
    [4] DUBEY R, JAYAGANTHAN R, RUAN D, et al. Ballistic perforation and penetration of 6xxx-series aluminium alloys: A review [J]. International Journal of Impact Engineering, 2023, 172: 104426. DOI: 10.1016/j.ijimpeng.2022.104426.
    [5] FAIDZI M K, ABDULLAH S, ABDULLAH M F, et al. Computational analysis on the different core configurations for metal sandwich panel under high velocity impact [J]. Soft Computing, 2021, 25(16): 10561–10574. DOI: 10.1007/s00500-021-06015-6.
    [6] LIU J, ZHENG B L, ZHANG K, et al. Ballistic performance and energy absorption characteristics of thin nickel-based alloy plates at elevated temperatures [J]. International Journal of Impact Engineering, 2019, 126: 160–171. DOI: 10.1016/j.ijimpeng.2018.12.012.
    [7] REN J, XU Y X, LIU J X, et al. Effect of strength and ductility on anti-penetration performance of low-carbon alloy steel against blunt-nosed cylindrical projectiles [J]. Materials Science and Engineering: A, 2017, 682: 312–322. DOI: 10.1016/j.msea.2016.11.012.
    [8] DENG Y F, HU A, XIAO X K, et al. Experimental and numerical investigation on the ballistic resistance of ZK61m magnesium alloy plates struck by blunt and ogival projectiles [J]. International Journal of Impact Engineering, 2021, 158: 104021. DOI: 10.1016/j.ijimpeng.2021.104021.
    [9] CHOUDHURI D, JANNOTTI P A, MUSKERI S, et al. Ballistic response of a FCC-B2 eutectic AlCoCrFeNi2.1 high entropy alloy [J]. Journal of Dynamic Behavior of Materials, 2019, 5(4): 495–503. DOI: 10.1007/s40870-019-00220-z.
    [10] ZHANG Y, ZUO T T, TANG Z, et al. Microstructures and properties of high-entropy alloys [J]. Progress in Materials Science, 2014, 61: 1–93. DOI: 10.1016/j.pmatsci.2013.10.001.
    [11] SADEGHILARIDJANI M, MUSKERI S, HASANNAEIMI V, et al. Strain rate sensitivity of a novel refractory high entropy alloy: intrinsic versus extrinsic effects [J]. Materials Science and Engineering: A, 2019, 766: 138326. DOI: 10.1016/j.msea.2019.138326.
    [12] LI Z Z, ZHAO S T, ALOTAIBI S M, et al. Adiabatic shear localization in the CrMnFeCoNi high-entropy alloy [J]. Acta Materialia, 2018, 151: 424–431. DOI: 10.1016/j.actamat.2018.03.040.
    [13] 张平, 李远田, 张金勇, 等. Si对AlCoCrFeNi高熵合金热腐蚀行为的影响 [J]. 稀有金属材料与工程, 2021, 50(10): 3640–3647.

    ZHANG P, LI Y T, ZHANG J Y, et al. Effect of Si addition on hot corrosion behavior of AlCoCrFeNi high entropy alloys [J]. Rare Metal Materials and Engineering, 2021, 50(10): 3640–3647.
    [14] 吴炳乾, 饶湖常, 张冲, 等. Si含量对FeCoCr0.5NiBSi x高熵合金涂层组织结构和耐磨性的影响 [J]. 表面技术, 2015, 44(12): 85–91. DOI: 10.16490/j.cnki.issn.1001-3660.2015.12.014.

    WU B Q, RAO H C, ZHANG C, et al. Effect of silicon content on the microstructure and wear resistance of FeCoCr0.5NiBSi x high-entropy alloy coatings [J]. Surface Technology, 2015, 44(12): 85–91. DOI: 10.16490/j.cnki.issn.1001-3660.2015.12.014.
    [15] 王根, 李新梅. 第一性原理计算Cu、Co含量对CoCuFeNi系高熵合金的影响 [J]. 功能材料, 2020, 51(3): 3189–3195. DOI: 10.3969/j.issn.1001-9731.2020.03.029.

    WANG G, LI X M. Effects of Cu, Co contents on CoCuFeNi system high-entropy alloys by the first principle calculation [J]. Journal of Functional Materials, 2020, 51(3): 3189–3195. DOI: 10.3969/j.issn.1001-9731.2020.03.029.
    [16] CANTOR B, CHANG I T H, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Materials Science and Engineering: A, 2004, 375/376/377: 213–218. DOI: 10.1016/j.msea.2003.10.257.
    [17] YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Advanced Engineering Materials, 2004, 6(5): 299–303. DOI: 10.1002/adem.200300567.
    [18] TSAI M H, YEH J W. High-entropy alloys: a critical review [J]. Materials Research Letters, 2014, 2(3): 107–123. DOI: 10.1080/21663831.2014.912690.
    [19] DENG Y, TASAN C C, PRADEEP K G, et al. Design of a twinning-induced plasticity high entropy alloy [J]. Acta Materialia, 2015, 94: 124–133. DOI: 10.1016/j.actamat.2015.04.014.
    [20] LEI Z F, LIU X J, WU Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes [J]. Nature, 2018, 563(7732): 546–550. DOI: 10.1038/s41586-018-0685-y.
    [21] GLUDOVATZ B, HOHENWARTER A, CATOOR D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345(6201): 1153–1158. DOI: 10.1126/science.1254581.
    [22] FU Z Q, JIANG L, WARDINI J L, et al. A high-entropy alloy with hierarchical nanoprecipitates and ultrahigh strength [J]. Science Advances, 2018, 4(10): eaat8712. DOI: 10.1126/sciadv.aat8712.
    [23] ZHANG Z J, MAO M M, WANG J W, et al. Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi [J]. Nature Communications, 2015, 6: 10143. DOI: 10.1038/ncomms10143.
    [24] DING Q Q, ZHANG Y, CHEN X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys [J]. Nature, 2019, 574(7777): 223–227. DOI: 10.1038/s41586-019-1617-1.
    [25] ZOU Y, MA H, SPOLENAK R. Ultrastrong ductile and stable high-entropy alloys at small scales [J]. Nature Communications, 2015, 6: 7748. DOI: 10.1038/ncomms8748.
    [26] TANG Y Q, LI D Y. Dynamic response of high-entropy alloys to ballistic impact [J]. Science Advances, 2022, 8(32): eabp9096. DOI: 10.1126/sciadv.abp9096.
    [27] ANDREOLI A F, HAN X L, KABAN I. In situ studies of non-equilibrium crystallization of Al x CoCrFeNi ( x=0.3, 1) high-entropy alloys [J]. Journal of Alloys and Compounds, 2022, 922: 166209. DOI: 10.1016/j.jallcom.2022.166209.
    [28] DIAO H Y, MA D, FENG R, et al. Novel NiAl-strengthened high entropy alloys with balanced tensile strength and ductility [J]. Materials Science and Engineering: A, 2019, 742: 636–647. DOI: 10.1016/j.msea.2018.11.055.
    [29] KIREEVA I V, CHUMLYAKOV Y I, POBEDENNAYA Z V, et al. Effect of V-phase particles on the orientation and temperature dependence of the mechanical behaviour of Al0.3CoCrFeNi high-entropy alloy single crystals [J]. Materials Science and Engineering: A, 2020, 772: 138772. DOI: 10.1016/j.msea.2019.138772.
    [30] ZHANG J L, QIU R S, TAN X N, et al. The precipitation behavior in Al0.3CoCrFeNi high-entropy alloy affected by deformation and annealing [J]. Metals, 2023, 13(1): 157. DOI: 10.3390/met13010157.
    [31] YASUDA H Y, SHIGENO K, NAGASE T. Dynamic strain aging of Al0.3CoCrFeNi high entropy alloy single crystals [J]. Scripta Materialia, 2015, 108: 80–83. DOI: 10.1016/j.scriptamat.2015.06.022.
    [32] KIREEVA I V, CHUMLYAKOV Y I, POBEDENNAYA Z V, et al. The orientation dependence of critical shear stresses in Al0.3CoCrFeNi high-entropy alloy single crystals [J]. Technical Physics Letters, 2017, 43(7): 615–618. DOI: 10.1134/S1063785017070082.
    [33] MUSKERI S, GWALANI B, JHA S, et al. Excellent ballistic impact resistance of Al0.3CoCrFeNi multi-principal element alloy with unique bimodal microstructure [J]. Scientific Reports, 2021, 11(1): 22715. DOI: 10.1038/s41598-021-02209-y.
    [34] 张荣, 祁文军, 张爽. Al x CoCrFeNi拉伸力学性能的分子动力学模拟 [J]. 钢铁钒钛, 2022, 43(6): 173–179. DOI: 10.7513/j.issn.1004-7638.2022.06.026.

    ZHANG R, QI W J, ZHANG S. Molecular dynamics simulation of tensile mechanical properties of Al x CoCrFeNi [J]. Iron Steel Vanadium Titanium, 2022, 43(6): 173–179. DOI: 10.7513/j.issn.1004-7638.2022.06.026.
    [35] 李健, 郭晓璇, 马胜国, 等. AlCrFeCuNi高熵合金力学性能的分子动力学模拟 [J]. 高压物理学报, 2020, 34(1): 011301. DOI: 10.11858/gywlxb.20190762.

    LI J, GUO X X, MA S G, et al. Mechanical properties of AlCrFeCuNi high entropy alloy: a molecular dynamics study [J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 011301. DOI: 10.11858/gywlxb.20190762.
    [36] 张路明. AlxCoCrFeNi高熵合金力学性能的分子动力学模拟 [D]. 太原: 太原理工大学, 2022.

    ZHANG L M. Mechanical properties of Al xCoCrFeNi high-entropy alloy: a molecular dynamics study [D]. Taiyuan: Taiyuan University of Technology, 2022.
    [37] 尹宗军, 苏蓉, 方传智, 等. FeNiCrCoCu高熵合金拉伸行为特征研究: 分子动力学模拟 [J]. 南阳师范学院学报, 2023, 22(3): 29–33. DOI: 10.3969/j.issn.1671-6132.2023.03.005.

    YIN Z J, SU R, FANG C Z, et al. Study on tensile behavior characteristics of FeNiCrCoCu high entropy alloys: molecular dynamics simulation [J]. Journal of Nanyang Normal University, 2023, 22(3): 29–33. DOI: 10.3969/j.issn.1671-6132.2023.03.005.
    [38] BARTON N R, BERNIER J V, BECKER R, et al. A multiscale strength model for extreme loading conditions [J]. Journal of Applied Physics, 2011, 109(7): 073501. DOI: 10.1063/1.3553718.
    [39] HUANG X, DING J, SONG K, et al. Crystal orientation effect on the irradiation mechanical properties and deformation mechanism of α-Fe: molecular dynamic simulations [J]. Journal of Materials Engineering and Performance, 2023, 32(18): 8063–8074. DOI: 10.1007/s11665-022-07730-3.
    [40] ZHANG Y, YU D J, WANG K M. Atomistic simulation of the orientation-dependent plastic deformation mechanisms of iron nanopillars [J]. Journal of Materials Science & Technology, 2012, 28(2): 164–168. DOI: 10.1016/S1005-0302(12)60037-1.
    [41] DASH M K, CHIU Y L, JONES I P, et al. Quasi-static compression of shock loaded, single crystal tantalum micropillars [J]. Materials Science and Engineering:A, 2023, 881: 145415. DOI: 10.1016/j.msea.2023.145415.
    [42] ISLAM A S M J, ISLAM M S, HASAN M S, et al. Anisotropic crystal orientations dependent mechanical properties and fracture mechanisms in zinc blende ZnTe nanowires [J]. RSC Advances, 2023, 13(33): 22800–22813. DOI: 10.1039/D3RA03825D.
    [43] XU W W, DÁVILA L P. Effects of crystal orientation and diameter on the mechanical properties of single-crystal MgAl2O4 spinel nanowires [J]. Nanotechnology, 2019, 30(5): 055701. DOI: 10.1088/1361-6528/aaef11.
    [44] SHI K W, CHENG J C, CUI L, et al. Ballistic impact response of Fe40Mn20Cr20Ni20 high-entropy alloys [J]. Journal of Applied Physics, 2022, 132(20): 205105. DOI: 10.1063/5.0130634.
    [45] QI Y M, XU H M, HE T W, et al. Effect of crystallographic orientation on mechanical properties of single-crystal CoCrFeMnNi high-entropy alloy [J]. Materials Science and Engineering: A, 2021, 814: 141196. DOI: 10.1016/j.msea.2021.141196.
    [46] ZHANG Q, HUANG R R, ZHANG X, et al. Deformation mechanisms and remarkable strain hardening in single-crystalline high-entropy-alloy micropillars/nanopillars [J]. Nano Letters, 2021, 21(8): 3671–3679. DOI: 10.1021/acs.nanolett.1c00444.
    [47] PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics [J]. Journal of Computational Physics, 1995, 117(1): 1–19. DOI: 10.1006/jcph.1995.1039.
    [48] FARKAS D, CARO A. Model interatomic potentials for Fe-Ni-Cr-Co-Al high-entropy alloys [J]. Journal of Materials Research, 2020, 35(22): 3031–3040. DOI: 10.1557/jmr.2020.294.
    [49] JONES J E. On the determination of molecular fields: II. from the equation of state of a gas [J]. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1924, 106(738): 463–477. DOI: 10.1098/rspa.1924.0082.
    [50] FAKEN D, JÓNSSON H. Systematic analysis of local atomic structure combined with 3D computer graphics [J]. Computational Materials Science, 1994, 2(2): 279–286. DOI: 10.1016/0927-0256(94)90109-0.
    [51] HONEYCUTT J D, ANDERSEN H C. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters [J]. The Journal of Physical Chemistry, 1987, 91(19): 4950–4963. DOI: 10.1021/j100303a014.
    [52] STUKOWSKI A. Structure identification methods for atomistic simulations of crystalline materials [J]. Modelling and Simulation in Materials Science and Engineering, 2012, 20(4): 045021. DOI: 10.1088/0965-0393/20/4/045021.
    [53] CORDERO Z C, KNIGHT B E, SCHUH C A. Six decades of the Hall-Petch effect: a survey of grain-size strengthening studies on pure metals [J]. International Materials Reviews, 2016, 61(8): 495–512. DOI: 10.1080/09506608.2016.1191808.
    [54] DEWAPRIYA M A N, MILLER R E. Energy absorption mechanisms of nanoscopic multilayer structures under ballistic impact loading [J]. Computational Materials Science, 2021, 195: 110504. DOI: 10.1016/j.commatsci.2021.110504.
    [55] CHENG Y J, DONG J L, LI F C, et al. Scaling law for impact resistance of amorphous alloys connecting atomistic molecular dynamics with macroscale experiments [J]. ACS Applied Materials and Interfaces, 2023, 15(10): 13449–13459. DOI: 10.1021/acsami.2c19719.
    [56] LI Z M, PRADEEP K G, DENG Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534(7606): 227–230. DOI: 10.1038/nature17981.
    [57] 叶天舟, 姚欢, 巫英伟, 等. FeCrAl合金拉伸力学性能分子动力学研究 [J]. 稀有金属材料与工程, 2023, 52(2): 777–784. DOI: 10.12442/j.issn.1002-185X.20220441.

    YE T Z, YAO H, WU Y W, et al. Molecular dynamics study on tensile mechanical properties of FeCrAl alloy [J]. Rare Metal Materials and Engineering, 2023, 52(2): 777–784. DOI: 10.12442/j.issn.1002-185X.20220441.
    [58] GAO X Z, LU Y P, ZHANG B, et al. Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy [J]. Acta Materialia, 2017, 141: 59–66. DOI: 10.1016/j.actamat.2017.07.041.
    [59] ZHANG D D, ZHANG J Y, KUANG J, et al. Superior strength-ductility synergy and strain hardenability of Al/Ta co-doped NiCoCr twinned medium entropy alloy for cryogenic applications [J]. Acta Materialia, 2021, 220: 117288. DOI: 10.1016/j.actamat.2021.117288.
    [60] DE COOMAN B C, ESTRIN Y, KIM S K. Twinning-induced plasticity (TWIP) steels [J]. Acta Materialia, 2018, 142: 283–362. DOI: 10.1016/j.actamat.2017.06.046.
    [61] SUN X H, WU D X, ZOU L F, et al. Dislocation-induced stop-and-go kinetics of interfacial transformations [J]. Nature, 2022, 607(7920): 708–713. DOI: 10.1038/s41586-022-04880-1.
    [62] GANGIREDDY S, GWALANI B, SONI V, et al. Contrasting mechanical behavior in precipitation hardenable AlXCoCrFeNi high entropy alloy microstructures: single phase FCC vs. dual phase FCC-BCC [J]. Materials Science and Engineering: A, 2019, 739: 158–166. DOI: 10.1016/j.msea.2018.10.021.
    [63] ZHANG Z R, ZHANG H, TANG Y, et al. Microstructure, mechanical properties and energetic characteristics of a novel high-entropy alloy HfZrTiTa0.53 [J]. Materials & Design, 2017, 133: 435–443. DOI: 10.1016/j.matdes.2017.08.022.
    [64] BHAV S B, SUKUMAR G, PRAKASA R P, et al. Superior ballistic performance of high-nitrogen steels against deformable and non-deformable projectiles [J]. Materials Science and Engineering: A, 2019, 751: 115–127. DOI: 10.1016/j.msea.2019.02.044.
  • 加载中
图(37) / 表(3)
计量
  • 文章访问数:  319
  • HTML全文浏览量:  300
  • PDF下载量:  158
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-07
  • 修回日期:  2023-11-23
  • 网络出版日期:  2023-11-24
  • 刊出日期:  2024-03-14

目录

    /

    返回文章
    返回