[1] |
单彤文, 宋鹏飞, 侯建国, 等. LNG产业视角下不同天然气制氢模式的终端氢气成本分析 [J]. 天然气化工(C1化学与化工), 2020, 45(2): 129–134. DOI: 10.3969/j.issn.1001-9219.2020.02.023.SHAN T W, SONG P F, HOU J G, et al. Cost analysis of hydrogen produced from different modes of natural gas to hydrogen-from the perspective of LNG industry [J]. Natural Gas Chemical Industry , 2020, 45(2): 129–134. DOI: 10.3969/j.issn.1001-9219.2020.02.023.
|
[2] |
宋鹏飞, 侯建国, 王秀林. 甲基环己烷-甲苯液体有机物储氢技术的研究进展 [J]. 天然气化工(C1化学与化工), 2021, 46(S1): 18–23. DOI: 10.3969/j.issn.1001-9219.2021.z1.003.SONG P F, HOU J G, WANG X L. Research progress on methylcyclohexane-toluene liquid organic hydrogen storage technology [J]. Natural Gas Chemical Industry , 2021, 46(S1): 18–23. DOI: 10.3969/j.issn.1001-9219.2021.z1.003.
|
[3] |
侯建国, 单彤文, 张超, 等. 小型橇装天然气制氢技术现状与发展趋势分析 [J]. 天然气化工(C1化学与化工), 2021, 46(3): 1–6. DOI: 10.3969/j.issn.1001-9219.2021.03.001.HOU J G, SHAN T W, ZHANG C, et al. Current situation and development trend analysis of small skid mounted natural gas hydrogen production technology [J]. Natural Gas Chemical Industry , 2021, 46(3): 1–6. DOI: 10.3969/j.issn.1001-9219.2021.03.001.
|
[4] |
宋鹏飞, 单彤文, 李又武, 等. 天然气管道掺入氢气的影响及技术可行性分析 [J]. 现代化工, 2020, 40(7): 5–10. DOI: 10.16606/j.cnki.issn0253-4320.2020.07.002.SONG P F, SHAN T W, LI Y W, et al. Impact of hydrogen into natural gas grid and technical feasibility analysis [J]. Modern Chemical Industry, 2020, 40(7): 5–10. DOI: 10.16606/j.cnki.issn0253-4320.2020.07.002.
|
[5] |
李凤, 董绍华, 陈林, 等. 掺氢天然气长距离管道输送安全关键技术与进展 [J]. 力学与实践, 2023, 45(2): 230–244. DOI: 10.6052/1000-0879-22-579.LI F, DONG S H, CHEN L, et al. Key safety technologies and advances in long-distance pipeline transportation of hydrogen blended natural gas [J]. Mechanics in Engineering, 2023, 45(2): 230–244. DOI: 10.6052/1000-0879-22-579.
|
[6] |
范维澄, 苗鸿雁, 袁亮, 等. 我国安全科学与工程学科“十四五”发展战略研究 [J]. 中国科学基金, 2021, 35(6): 864–870. DOI: 10.16262/j.cnki.1000-8217.2021.06.003.FAN W C, MIAO H Y, YUAN L, et al. Development strategy of safety discipline in China during the 14th five-year plan period [J]. Bulletin of National Natural Science Foundation of China, 2021, 35(6): 864–870. DOI: 10.16262/j.cnki.1000-8217.2021.06.003.
|
[7] |
FAGHIH M, CHEN Z. The constant-volume propagating spherical flame method for laminar flame speed measurement [J]. Science Bulletin, 2016, 61(16): 1296–1310. DOI: 10.1007/s11434-016-1143-6.
|
[8] |
XIOURIS C, YE T L, JAYACHANDRAN J, et al. Laminar flame speeds under engine-relevant conditions: uncertainty quantification and minimization in spherically expanding flame experiments [J]. Combustion and Flame, 2016, 163: 270–283. DOI: 10.1016/j.combustflame.2015.10.003.
|
[9] |
NISHIMURA I, MOGI T, DOBASHI R. Simple method for predicting pressure behavior during gas explosions in confined spaces considering flame instabilities [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(2): 351–354. DOI: 10.1016/j.jlp.2011.08.009.
|
[10] |
XU C S, WANG H Y, OPPONG F, et al. Determination of laminar burning characteristics of a surrogate for a pyrolysis fuel using constant volume method [J]. Energy, 2020, 190: 116315. DOI: 10.1016/j.energy.2019.116315.
|
[11] |
丁以斌, 高伟. 当量比和初压对二甲醚-空气爆炸特性的影响研究 [J]. 安全与环境学报, 2021, 21(5): 2076–2080. DOI: 10.13637/j.issn.1009-6094.2020.0347.DING Y B, GAO W. Effect of the equivalence ratio and the initial pressure on the particular features of the dimethyl ether-air explosion [J]. Journal of Safety and Environment, 2021, 21(5): 2076–2080. DOI: 10.13637/j.issn.1009-6094.2020.0347.
|
[12] |
MORSY M E, YANG J F. The instability of laminar methane/hydrogen/air flames: correlation between small and large-scale explosions [J]. International Journal of Hydrogen Energy, 2022, 47(69): 29959–29970. DOI: 10.1016/j.ijhydene.2022.06.289.
|
[13] |
OKAFOR E C, HAYAKAWA A, NAGANO Y, et al. Effects of Hydrogen concentration on hydrogen-methane-air lean laminar flames [C]//Proceedings of the KSME-JSME 8th Thermal and Fluid Engineering Conference. 2012.
|
[14] |
BECHTOLD J K, MATALON M. The dependence of the Markstein length on stoichiometry [J]. Combustion and Flame, 2001, 127(1/2): 1906–1913. DOI: 10.1016/S0010-2180(01)00297-8.
|
[15] |
HU E J, HUANG Z H, HE J J, et al. Measurements of laminar burning velocities and onset of cellular instabilities of methane-hydrogen-air flames at elevated pressures and temperatures [J]. International Journal of Hydrogen Energy, 2009, 34(13): 5574–5584. DOI: 10.1016/j.ijhydene.2009.04.058.
|
[16] |
BEECKMANN J, HESSE R, KRUSE S, et al. Propagation speed and stability of spherically expanding hydrogen/air flames: experimental study and asymptotics [J]. Proceedings of the Combustion Institute, 2017, 36(1): 1531–1538. DOI: 10.1016/j.proci.2016.06.194.
|
[17] |
KIM W, IMAMURA T, MOGI T, et al. Experimental investigation on the onset of cellular instabilities and acceleration of expanding spherical flames [J]. International Journal of Hydrogen Energy, 2017, 42(21): 14821–14828. DOI: 10.1016/j.ijhydene.2017.04.068.
|
[18] |
李停. H2/CH4/N2O预混气体燃烧特性和火焰不稳定性研究 [D]. 合肥: 中国科学技术大学, 2022.LI T. Combustion characteristics and flame instability of H2/CH4/N2O premixed gas [D]. Hefei: University of Science and Technology of China, 2022.
|
[19] |
JOMAAS G, LAW C K, BECHTOLD J K. On transition to cellularity in expanding spherical flames [J]. Journal of Fluid Mechanics, 2007, 583: 1–26. DOI: 10.1017/S0022112007005885.
|
[20] |
LAW C K, JOMAAS G, BECHTOLD J K. Cellular instabilities of expanding hydrogen/propane spherical flames at elevated pressures: theory and experiment [J]. Proceedings of the Combustion Institute, 2005, 30(1): 159–167. DOI: 10.1016/j.proci.2004.08.266.
|
[21] |
GOSTINTSEV Y A, ISTRATOV A G, SHULENIN Y V. Self-similar propagation of a free turbulent flame in mixed gas mixtures [J]. Combustion, Explosion and Shock Waves, 1988, 24(5): 563–569. DOI: 10.1007/BF00755496.
|
[22] |
OKAFOR E C, NAGANO Y, KITAGAWA T. Experimental and theoretical analysis of cellular instability in lean H2-CH4-air flames at elevated pressures [J]. International Journal of Hydrogen Energy, 2016, 41(15): 6581–6592. DOI: 10.1016/j.ijhydene.2016.02.151.
|
[23] |
WU F J, JOMAAS G, LAW C K. An experimental investigation on self-acceleration of cellular spherical flames [J]. Proceedings of the Combustion Institute, 2013, 34(1): 937–945. DOI: 10.1016/j.proci.2012.05.068.
|
[24] |
YENERDAG B, FUKUSHIMA N, SHIMURA M, et al. Turbulence–flame interaction and fractal characteristics of H2-air premixed flame under pressure rising condition [J]. Proceedings of the Combustion Institute, 2015, 35(2): 1277–1285. DOI: 10.1016/j.proci.2014.05.153.
|
[25] |
GOULDIN F C. An application of fractals to modeling premixed turbulent flames [J]. Combustion and Flame, 1987, 68(3): 249–266. DOI: 10.1016/0010-2180(87)90003-4.
|
[26] |
MA F H, LI S, ZHAO J B, et al. A fractal-based quasi-dimensional combustion model for SI engines fuelled by hydrogen enriched compressed natural gas [J]. International Journal of Hydrogen Energy, 2012, 37(12): 9892–9901. DOI: 10.1016/j.ijhydene.2012.03.045.
|
[27] |
XIAO H H, MAKAROV D, SUN J H, et al. Experimental and numerical investigation of premixed flame propagation with distorted tulip shape in a closed duct [J]. Combustion and Flame, 2012, 159(4): 1523–1538. DOI: 10.1016/j.combustflame.2011.12.003.
|
[28] |
肖华华. 管道中氢-空气预混火焰传播动力学实验与数值模拟研究 [D]. 合肥: 中国科学技术大学, 2013.XIAO H H. Experimental and numerical study of dynamics of premixed hydrogen-air flame propagating in ducts [D]. Hefei: University of Science and Technology of China, 2013.
|
[29] |
ZHENG K, YU M G, ZHENG L G, et al. Experimental study on premixed flame propagation of hydrogen/methane/air deflagration in closed ducts [J]. International Journal of Hydrogen Energy, 2017, 42(8): 5426–5438. DOI: 10.1016/j.ijhydene.2016.10.106.
|
[30] |
LIANG B, HUANG L, GAO W, et al. Flame evolution and pressure dynamics of methane-hydrogen-air explosion in a horizontal rectangular duct [J]. Fuel, 2024, 357: 129962. DOI: 10.1016/j.fuel.2023.129962.
|
[31] |
YANG J, GUO J, WANG C H, et al. Effect of equivalence ratio on hydrogen-methane-air deflagration in a duct with an open end [J]. Fuel, 2020, 280: 118694. DOI: 10.1016/j.fuel.2020.118694.
|
[32] |
倪靖, 潘剑锋, 姜超, 等. 掺氢比对甲烷-氧气爆轰特性的影响 [J]. 爆炸与冲击, 2020, 40(4): 042102. DOI: 10.11883/bzycj-2019-0237.NI J, PAN J F, JIANG C, et al. Effects of hydrogen-blending ratio on detonation characteristics of premixed methane-oxygen gas [J]. Explosion and Shock Waves, 2020, 40(4): 042102. DOI: 10.11883/bzycj-2019-0237.
|
[33] |
马青峰, 韩辉, 李玉星, 等. 受限空间掺氢天然气泄漏与燃爆特性研究综述 [J]. 油气与新能源, 2023, 35(1): 117–128. DOI: 10.3969/j.issn.2097-0021.2023.01.015.MA Q F, HAN H, LI Y X, et al. Research summary of the leakage, combustion and explosion characteristics concerning hydrogen enriched compressed natural gas (HCNG) in confined space [J]. Petroleum and New Energy, 2023, 35(1): 117–128. DOI: 10.3969/j.issn.2097-0021.2023.01.015.
|
[34] |
LIU G L, WANG J, ZHENG L G, et al. Effect of hydrogen addition on explosion characteristics of premixed methane/air mixture under different equivalence ratio distributions [J]. Energy, 2023, 276: 127607. DOI: 10.1016/j.energy.2023.127607.
|
[35] |
WANG S, XIAO G Q, FENG Y, et al. Investigation of premixed hydrogen/methane flame propagation and kinetic characteristics for continuous obstacles with gradient barrier ratio [J]. Energy, 2023, 267: 126620. DOI: 10.1016/j.energy.2023.126620.
|
[36] |
CAI P, LIU Z Y, LI P L, et al. Effects of fuel component, airflow field and obstacles on explosion characteristics of hydrogen/methane mixtures fuel [J]. Energy, 2023, 265: 126302. DOI: 10.1016/j.energy.2022.126302.
|
[37] |
WANG S, XIAO G Q, MI H F, et al. Experimental and numerical study on flame fusion behavior of premixed hydrogen/methane explosion with two-channel obstacles [J]. Fuel, 2023, 333: 126530. DOI: 10.1016/j.fuel.2022.126530.
|
[38] |
刘晓洋, 喻健良, 侯玉洁, 等. 螺旋微通道对掺氢甲烷爆轰传播的影响 [J]. 化工学报, 2023, 74(7): 3139–3148. DOI: 10.11949/0438-1157.20230365.LIU X Y, YU J L, HOU Y J, et al. Effect of spiral microchannel on detonation propagation of hydrogen-doped methane [J]. CIESC Journal, 2023, 74(7): 3139–3148. DOI: 10.11949/0438-1157.20230365.
|
[39] |
陈洪强, 李俊磊, 张成龙, 等. 掺氢可燃气体燃爆特性研究进展 [J]. 力学与实践, 2023, 45(2): 345–361. DOI: 10.6052/1000-0879-22-688.CHEN H Q, LI J L, ZHANG C L, et al. Research progress in the study of flammability and explosion characteristics of hydrogen-doped combustible gases [J]. Mechanics in Engineering, 2023, 45(2): 345–361. DOI: 10.6052/1000-0879-22-688.
|
[40] |
王朝君, 黄诗晗, 胡二江, 等. 甲烷/氢气/空气混合气激光诱导等离子体点火特性 [J]. 中南大学学报(自然科学版), 2022, 53(6): 2111–2121. DOI: 10.11817/j.issn.1672-7207.2022.06.013.WANG C J, HUANG S H, HU E J, et al. Laser-induced plasma ignition characteristics of methane/hydrogen/air mixture [J]. Journal of Central South University (Science and Technology), 2022, 53(6): 2111–2121. DOI: 10.11817/j.issn.1672-7207.2022.06.013.
|
[41] |
TANG C L, ZHANG Y J, HUANG Z H. Progress in combustion investigations of hydrogen enriched hydrocarbons [J]. Renewable and Sustainable Energy Reviews, 2014, 30: 195–216. DOI: 10.1016/j.rser.2013.10.005.
|
[42] |
MA Q J, ZHANG Q, CHEN J C, et al. Effects of hydrogen on combustion characteristics of methane in air [J]. International Journal of Hydrogen Energy, 2014, 39(21): 11291–11298. DOI: 10.1016/j.ijhydene.2014.05.030.
|
[43] |
WANG W Q, SUN Z Y. Experimental studies on explosive limits and minimum ignition energy of syngas: a comparative review [J]. International Journal of Hydrogen Energy, 2019, 44(11): 5640–5649. DOI: 10.1016/j.ijhydene.2018.08.016.
|
[44] |
MESSAOUDANI Z L, RIGAS F, BINTI HAMID M D, et al. Hazards, safety and knowledge gaps on hydrogen transmission via natural gas grid: a critical review [J]. International Journal of Hydrogen Energy, 2016, 41(39): 17511–17525. DOI: 10.1016/j.ijhydene.2016.07.171.
|
[45] |
MIAO H Y, LU L, HUANG Z H. Flammability limits of hydrogen-enriched natural gas [J]. International Journal of Hydrogen Energy, 2011, 36(11): 6937–6947. DOI: 10.1016/j.ijhydene.2011.02.126.
|
[46] |
MOLNARNE M, SCHROEDER V. Hazardous properties of hydrogen and hydrogen containing fuel gases [J]. Process Safety and Environmental Protection, 2019, 130: 1–5. DOI: 10.1016/j.psep.2019.07.012.
|
[47] |
VAN DEN SCHOOR F, VERPLAETSEN F, BERGHMANS J. Calculation of the upper flammability limit of methane/air mixtures at elevated pressures and temperatures [J]. International Journal of Hydrogen Energy, 2008, 153(3): 1301–1307. DOI: 10.1016/j.jhazmat.2007.09.088.
|
[48] |
HAO Q Q, LUO Z M, WANG T, et al. The flammability limits and explosion behaviours of hydrogen-enriched methane-air mixtures [J]. Experimental Thermal and Fluid Science, 2021, 126: 110395. DOI: 10.1016/j.expthermflusci.2021.110395.
|
[49] |
FAGHIH M, GOU X L, CHEN Z. The explosion characteristics of methane, hydrogen and their mixtures: a computational study [J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 131–138. DOI: 10.1016/j.jlp.2015.12.015.
|
[50] |
MOVILEANU C, RAZUS D, OANCEA D. Additive effects on the rate of pressure rise for ethylene-air deflagrations in closed vessels [J]. Fuel, 2013, 111: 194–200. DOI: 10.1016/j.fuel.2013.04.053.
|
[51] |
RAZUS D, BRINZEA V, MITU M, et al. Temperature and pressure influence on maximum rates of pressure rise during explosions of propane-air mixtures in a spherical vessel [J]. Journal of Hazardous Materials, 2011, 190(1): 891–896. DOI: 10.1016/j.jhazmat.2011.04.018.
|
[52] |
SUN Z Y. Experimental studies on the explosion indices in turbulent stoichiometric H2/CH4/air mixtures [J]. International Journal of Hydrogen Energy, 2019, 44(1): 469–476. DOI: 10.1016/j.ijhydene.2018.02.094.
|
[53] |
LI Y C, BI M S, LI B, et al. Effects of hydrogen and initial pressure on flame characteristics and explosion pressure of methane/hydrogen fuels [J]. Fuel, 2018, 233: 269–282. DOI: 10.1016/j.fuel.2018.06.042.
|
[54] |
WANG T, LIANG H, LIN J J, et al. The explosion thermal behavior of H2/CH4/air mixtures in a closed 20 L vessel [J]. International Journal of Hydrogen Energy, 2022, 47(2): 1390–1400. DOI: 10.1016/j.ijhydene.2021.10.092.
|
[55] |
CAMMAROTA F, DI BENEDETTO A, DI SARLI V, et al. Combined effects of initial pressure and turbulence on explosions of hydrogen-enriched methane/air mixtures [J]. Journal of Loss Prevention in the Process Industries, 2009, 22(5): 607–613. DOI: 10.1016/j.jlp.2009.05.001.
|
[56] |
SHEN X B, XIU G L, WU S Z. Experimental study on the explosion characteristics of methane/air mixtures with hydrogen addition [J]. Applied Thermal Engineering, 2017, 120: 741–747. DOI: 10.1016/j.applthermaleng.2017.04.040.
|
[57] |
LOWESMITH B J, HANKINSON G, JOHNSON D M. Vapour cloud explosions in a long congested region involving methane/hydrogen mixtures [J]. Process Safety and Environmental Protection, 2011, 89(4): 234–247. DOI: 10.1016/j.psep.2011.04.002.
|
[58] |
SHIRVILL L C, ROBERTS T A, ROYLE M, et al. Experimental study of hydrogen explosion in repeated pipe congestion-part 2: effects of increase in hydrogen concentration in hydrogen-methane-air mixture [J]. International Journal of Hydrogen Energy, 2019, 44(5): 3264–3276. DOI: 10.1016/j.ijhydene.2018.12.021.
|
[59] |
郑凯. 管道中氢气/甲烷混合燃料爆燃预混火焰传播特征研究 [D]. 重庆: 重庆大学, 2017.ZHENG K. Study on the propagation characteristics of premixed flame of hydrogen/methane deflagration in ducts [D]. Chongqing: Chongqing University, 2017.
|
[60] |
ZHANG S H, MA H T, HUANG X M, et al. Numerical simulation on methane-hydrogen explosion in gas compartment in utility tunnel [J]. Process Safety and Environmental Protection, 2020, 140: 100–110. DOI: 10.1016/j.psep.2020.04.025.
|
[61] |
SHI L, MENG X B, WU Y. Numerical study on the propagation of CH4/H2 flame in a pipeline under different H2 enrichment conditions [J]. Journal of Cleaner Production, 2023, 423: 138689. DOI: 10.1016/j.jclepro.2023.138689.
|
[62] |
董冰岩, 查裕学, 邹颖, 等. 球形压力容器中甲烷-氢气-空气爆炸过程数值模拟及实验研究 [J]. 中国安全生产科学技术, 2023, 19(3): 157–163. DOI: 10.11731/j.issn.1673-193x.2023.03.023.DONG B Y, ZHA Y X, ZOU Y, et al. Numerical simulation and experimental study of methane-hydrogen-air explosion process in spherical pressure vessel [J]. Journal of Safety Science and Technology, 2023, 19(3): 157–163. DOI: 10.11731/j.issn.1673-193x.2023.03.023.
|
[63] |
CICORIA D, CHAN C K. Large eddy simulation of lean turbulent hydrogen-enriched methane-air premixed flames at high Karlovitz numbers [J]. International Journal of Hydrogen Energy, 2016, 41(47): 22479–22496. DOI: 10.1016/j.ijhydene.2016.09.051.
|
[64] |
BO Y F, LI Y C, GAO W. Exploring the effects of turbulent field on propagation behaviors in confined hydrogen-air explosion using OpenFOAM [J]. International Journal of Hydrogen Energy, 2024, 50: 912–927. DOI: 10.1016/j.ijhydene.2023.07.303.
|
[65] |
WANG Y, ZHANG X, LI Y F. Numerical simulation of methane-hydrogen-air premixed combustion in turbulence [J]. International Journal of Hydrogen Energy, 2023, 48(19): 7122–7133. DOI: 10.1016/j.ijhydene.2022.05.167.
|
[66] |
LEI B W, WEI Q N, PANG R H, et al. The effect of hydrogen addition on methane/air explosion characteristics in a 20-L spherical device [J]. Fuel, 2023, 338: 127351. DOI: 10.1016/j.fuel.2022.127351.
|
[67] |
LEI B W, XIAO J J, KUZNETSOV M, et al. Effects of heat transfer mechanism on methane-air mixture explosion in 20 L spherical device [J]. Journal of Loss Prevention in the Process Industries, 2022, 80: 104864. DOI: 10.1016/j.jlp.2022.104864.
|
[68] |
KANURY A M. Combustion: Ⅰ. glassman, second edition, Academic Press, New York, 1987, xxi + 501 pp. , $49.50 [J]. Combustion and Flame, 1988, 71(1): 107–108. DOI: 10.1016/0010-2180(88)90111-3.
|
[69] |
SEMENOV N. Chemical kinetics and chain reactions [M]. London: Oxford University Press, 1935.
|
[70] |
LEWIS B, VON ELBE G. Combustion, flames and explosions of gases [M]. 3rd ed. Orlando: Academic Press, 1987.
|
[71] |
黎民. 《热爆炸理论》简介 [J]. 爆炸与冲击, 1988, 8(2): 179.
|
[72] |
周力行. 燃烧理论和化学流体力学 [M]. 北京: 科学普及出版社, 1986.
|
[73] |
邓凯, 胡锦林, 王明晓, 等. 不同速度波动下氢含量变化对氢气-甲烷钝体火焰燃烧不稳定性的影响 [J]. 推进技术, 2021, 42(1): 185–191. DOI: 10.13675/j.cnki.tjjs.200200.DENG K, HU J L, WANG M X, et al. Effects of hydrogen contents change on combustion instability of hydrogen-methane bluff-body flame at different velocities [J]. Journal of Propulsion Technology, 2021, 42(1): 185–191. DOI: 10.13675/j.cnki.tjjs.200200.
|
[74] |
陈立, 李祥晟. 低旋流CH4/H2火焰的燃烧特性及稳定性机制研究 [J]. 西安交通大学学报, 2017, 51(1): 72–78. DOI: 10.7652/xjtuxb201701012.CHEN L, LI X S. Study on the combustion characteristics and stabilization mechanism of low swirl CH4/H2 flame [J]. Journal of Xi’an Jiaotong University, 2017, 51(1): 72–78. DOI: 10.7652/xjtuxb201701012.
|
[75] |
DAMKOHLER G. The effect of turbulence on the flame velocity in gas mixtures: No. 1112 [R]. Washington: NACA, 1947.
|
[76] |
LIPATNIKOV A N, CHOMIAK J. Turbulent flame speed and thickness: phenomenology, evaluation, and application in multi-dimensional simulations [J]. Progress in Energy and Combustion Science, 2002, 28(1): 1–74. DOI: 10.1016/S0360-1285(01)00007-7.
|
[77] |
赵江平, 王振成. 热爆炸理论在粉尘爆炸机理研究中的应用 [J]. 中国安全科学学报, 2004, 14(5): 80–83. DOI: 10.3969/j.issn.1003-3033.2004.05.020.ZHAO J P, WANG Z C. Application of heat explosion theory to dust explosion mechanism research [J]. China Safety Science Journal, 2004, 14(5): 80–83. DOI: 10.3969/j.issn.1003-3033.2004.05.020.
|
[78] |
周力行. 论燃烧学发展的几个里程碑 [J]. 热能动力工程, 2023, 38(5): 1–13. DOI: 10.16146/j.cnki.rndlgc.2023.05.001.ZHOU L X. On some milestones in the development of combustion theory [J]. Journal of Engineering for Thermal Energy and Power, 2023, 38(5): 1–13. DOI: 10.16146/j.cnki.rndlgc.2023.05.001.
|
[79] |
PARK O, VELOO P S, SHEEN D A, et al. Chemical kinetic model uncertainty minimization through laminar flame speed measurements [J]. Combustion and Flame, 2016, 172: 136–152. DOI: 10.1016/j.combustflame.2016.07.004.
|
[80] |
SU J, WU Y, WANG Y, et al. Skeletal and reduced kinetic models for methane oxidation under engine-relevant conditions [J]. Fuel, 2020, 288: 119667. DOI: 10.1016/j.fuel.2020.119667.
|
[81] |
CONAIRE M, CURRAN H J, SIMMIE J M, et al. A comprehensive modeling study of hydrogen oxidation [J]. International Journal of Chemical Kinetics, 2004, 36(11): 603–622. DOI: 10.1002/kin.20036.
|
[82] |
SU B, LUO Z M, WANG T, et al. Chemical kinetic behaviors at the chain initiation stage of CH4/H2/air mixture [J]. Journal of Hazardous Materials, 2021, 403: 123680. DOI: 10.1016/j.jhazmat.2020.123680.
|
[83] |
SU B, LUO Z M, DENG J, et al. Comparative study on methane/air deflagration with hydrogen and ethane additions: investigation from macro and micro perspectives [J]. Process Safety and Environmental Protection, 2023, 174: 561–573. DOI: 10.1016/j.psep.2023.04.030.
|
[84] |
DAGAUT P, NICOLLE A. Experimental and detailed kinetic modeling study of hydrogen-enriched natural gas blend oxidation over extended temperature and equivalence ratio ranges [J]. Proceedings of the Combustion Institute, 2005, 30(2): 2631–2638. DOI: 10.1016/j.proci.2004.07.030.
|
[85] |
路长, 刘洋, 王鸿波, 等. CO2、H2对CH4/Air预混气爆炸特性的影响 [J]. 安全与环境学报, 2018, 18(5): 1788–1795. DOI: 10.13637/j.issn.1009-6094.2018.05.024.LU C, LIU Y, WANG H B, et al. Experimental study of the effects of CO2/H2 on the characteristic features of methane/air bursts [J]. Journal of Safety and Environment, 2018, 18(5): 1788–1795. DOI: 10.13637/j.issn.1009-6094.2018.05.024.
|
[86] |
SU Y, LUO Z M, WANG T, et al. Effect of nitrogen on deflagration characteristics of hydrogen/methane mixture [J]. International Journal of Hydrogen Energy, 2022, 47(15): 9156–9168. DOI: 10.1016/j.ijhydene.2022.01.013.
|
[87] |
ZHANG C, WEN J, SHEN X B, et al. Experimental study of hydrogen/air premixed flame propagation in a closed channel with inhibitions for safety consideration [J]. International Journal of Hydrogen Energy, 2019, 44(40): 22654–22660. DOI: 10.1016/j.ijhydene.2019.04.032.
|
[88] |
ZHANG C, SHEN X B, WEN J X, et al. The behavior of methane/hydrogen/air premixed flame in a closed channel with inhibition [J]. Fuel, 2020, 265: 116810. DOI: 10.1016/j.fuel.2019.116810.
|
[89] |
SHANG R X, ZHUANG Z X, YANG Y, et al. Laminar flame speed of H2/CH4/air mixtures with CO2 and N2 dilution [J]. International Journal of Hydrogen Energy, 2022, 47(75): 32315–32329. DOI: 10.1016/j.ijhydene.2022.07.099.
|
[90] |
CHEN J N, CHEN G Y, ZHANG A C, et al. Experimental and numerical study on the effect of CO2 dilution on the laminar combustion characteristics of premixed CH4/H2/air flame [J]. Journal of the Energy Institute, 2022, 102: 315–326. DOI: 10.1016/j.joei.2022.04.002.
|
[91] |
ZHANG X, YANG Z, HUANG X, et al. Combustion enhancement and inhibition of hydrogen-doped methane flame by HFC-227ea [J]. International Journal of Hydrogen Energy, 2021, 46(41): 21704–21714. DOI: 10.1016/j.ijhydene.2021.03.250.
|
[92] |
YOSHIDA A, OKAWA T, EBINA W, et al. Experimental and numerical investigation of flame speed retardation by water mist [J]. Combustion and Flame, 2015, 162(5): 1772–1777. DOI: 10.1016/j.combustflame.2014.11.038.
|
[93] |
MODAK A U, ABBUD-MADRID A, DELPLANQUE J P, et al. The effect of mono-dispersed water mist on the suppression of laminar premixed hydrogen-, methane-, and propane-air flames [J]. Combustion and Flame, 2006, 144(1/2): 103–111. DOI: 10.1016/j.combustflame.2005.07.003.
|
[94] |
SHIMIZU H, TSUZUKI M, YAMAZAKI Y, et al. Experiments and numerical simulation on methane flame quenching by water mist [J]. Journal of Loss Prevention in the Process Industries, 2001, 14(6): 603–608. DOI: 10.1016/S0950-4230(01)00055-9.
|
[95] |
PARRA T, CASTRO F, MÉNDEZ C, et al. Extinction of premixed methane-air flames by water mist [J]. Fire Safety Journal, 2004, 39(7): 581–600. DOI: 10.1016/j.firesaf.2004.05.001.
|
[96] |
THOMAS G O. On the conditions required for explosion mitigation by water sprays [J]. Process Safety and Environmental Protection, 2000, 78(5): 339–354. DOI: 10.1205/095758200530862.
|
[97] |
VAN WINGERDEN K, WILKINS B. The influence of water sprays on gas explosions. part 1: water-spray-generated turbulence [J]. Journal of Loss Prevention in the Process Industries, 1995, 8(2): 53–59. DOI: 10.1016/0950-4230(95)00002-I.
|
[98] |
夏远辰, 张彬, 王博乔, 等. 超细水雾对氢气-甲烷预混气体爆燃抑制机理的实验研究 [J]. 大连海事大学学报, 2022, 48(4): 127–134. DOI: 10.16411/j.cnki.issn1006-7736.2022.04.015.XIA Y C, ZHANG B, WANG B Q, et al. Experimental research on suppression mechanism of ultrafine water mist on deflagration of hydrogen-methane premixed gas [J]. Journal of Dalian Maritime University, 2022, 48(4): 127–134. DOI: 10.16411/j.cnki.issn1006-7736.2022.04.015.
|
[99] |
WEN X P, WANG M M, SU T F, et al. Suppression effects of ultrafine water mist on hydrogen/methane mixture explosion in an obstructed chamber [J]. International Journal of Hydrogen Energy, 2019, 44(60): 32332–32342. DOI: 10.1016/j.ijhydene.2019.10.110.
|
[100] |
曹兴岩, 任婧杰, 周一卉, 等. 超细水雾增强与抑制甲烷/空气爆炸的机理分析 [J]. 煤炭学报, 2016, 41(7): 1711–1719. DOI: 10.13225/j.cnki.jccs.2015.1726.CAO X Y, REN J J, ZHOU Y H, et al. Analysis on the enhancement and suppression of methane/air explosions by ultrafine water mist [J]. Journal of China Coal Society, 2016, 41(7): 1711–1719. DOI: 10.13225/j.cnki.jccs.2015.1726.
|
[101] |
章智慧, 王昌建, 刘义, 等. 细水雾与欠膨胀氢气喷射火相互作用的实验研究 [J]. 合肥工业大学学报(自然科学版), 2023, 46(8): 1115–1121. DOI: 10.3969/j.issn.1003-5060.2023.08.017.ZHANG Z H, WANG C J, LIU Y, et al. Experimental study of the interaction of water mist with under-expanded hydrogen jet flames [J]. Journal of Hefei University of Technology (Natural Science), 2023, 46(8): 1115–1121. DOI: 10.3969/j.issn.1003-5060.2023.08.017.
|
[102] |
XU Y L, WANG L Y, YU M G, et al. Study on the characteristics of gas explosion affected by induction charged water mist in confined space [J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 227–233. DOI: 10.1016/j.jlp.2015.12.027.
|
[103] |
余明高, 吴丽洁, 万少杰, 等. 含NaCl荷电细水雾对甲烷爆炸火焰传播的抑制特性 [J]. 化工学报, 2017, 68(11): 4445–4452. DOI: 10.11949/j.issn.0438-1157.20170585.YU M G, WU L J, WAN S J, et al. Inhibition characteristics on methane explosion flame propagation affected by charged water mist containing sodium chloride additive [J]. CIESC Journal, 2017, 68(11): 4445–4452. DOI: 10.11949/j.issn.0438-1157.20170585.
|
[104] |
YU M G, WAN S J, XU Y L, et al. The influence of the charge-to-mass ratio of the charged water mist on a methane explosion [J]. Journal of Loss Prevention in the Process Industries, 2016, 41: 68–76. DOI: 10.1016/j.jlp.2016.03.020.
|
[105] |
CAO X Y, REN J J, BI M S, et al. Experimental research on methane/air explosion inhibition using ultrafine water mist containing additive [J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 352–360. DOI: 10.1016/j.jlp.2016.06.012.
|
[106] |
LIU L T, LUO Z M, WANG T, et al. Inhibitory effects of water mist containing alkali metal salts on hydrogen-natural gas diffusion flames [J]. International Journal of Hydrogen Energy, 2024, 51: 754–764. DOI: 10.1016/j.ijhydene.2023.03.457.
|
[107] |
WEI S M, YU M G, PEI B, et al. Experimental and numerical study on the explosion suppression of hydrogen/dimethyl ether/methane/air mixtures by water mist containing NaHCO3 [J]. Fuel, 2022, 328: 125235. DOI: 10.1016/j.fuel.2022.125235.
|
[108] |
殷永丰. 含磷化合物抑制甲烷火焰的数值分析研究 [D]. 合肥: 中国科学技术大学, 2018.YIN Y F. Numerical analysis for the inhibition of phosphorus-containing compounds on methane flame [D]. Hefei: University of Science and Technology of China, 2018.
|
[109] |
李威. 甲基膦酸二甲酯抑制碳氢火焰的机理研究 [D]. 合肥: 中国科学技术大学, 2019.LI W. Study on the inhibiting mechanism of hydrocarbon flames by DMMP [D]. Hefei: University of Science and Technology of China, 2019.
|
[110] |
余明高, 阳旭峰, 郑凯, 等. 我国煤矿瓦斯爆炸抑爆减灾技术的研究进展及发展趋势 [J]. 煤炭学报, 2020, 45(1): 168–188. DOI: 10.13225/j.cnki.jccs.YG19.1422.YU M G, YANG X F, ZHENG K, et al. Progress and development of coal mine gas explosion suppression and disaster reduction technology in China [J]. Journal of China Coal Society, 2020, 45(1): 168–188. DOI: 10.13225/j.cnki.jccs.YG19.1422.
|
[111] |
LUO Z M, SU Y, CHEN X K, et al. Effect of BC powder on hydrogen/methane/air premixed gas deflagration [J]. Fuel, 2019, 257: 116095. DOI: 10.1016/j.fuel.2019.116095.
|
[112] |
贾宝山, 温海燕, 梁运涛, 等. 受限空间瓦斯爆炸与氢气促进机理研究 [J]. 中国安全科学学报, 2012, 22(2): 81–87. DOI: 10.16265/j.cnki.issn1003-3033.2012.02.016.JIA B S, WEN H Y, LIANG Y T, et al. Study on the methane explosion in an enclosed space and hydrogen promoting mechanism [J]. China Safety Science Journal, 2012, 22(2): 81–87. DOI: 10.16265/j.cnki.issn1003-3033.2012.02.016.
|
[113] |
田莉. 受限空间内氢气/甲烷/空气混合物爆炸特性及抑爆研究 [D]. 杭州: 中国计量大学, 2019.TIAN L. Study on characteristics and suppression of hydrogen/methane/air mixture explosion [D]. Hangzhou: China Jiliang University, 2019.
|
[114] |
苏洋. 氢气/甲烷/空气预混气体爆燃特性及抑制规律研究 [D]. 焦作: 河南理工大学, 2018.SU Y. Study on the deflagration characteristics and suppression of hydrogen/methane/air premixed gas [D]. Jiaozuo: Henan Polytechnic University, 2018.
|
[115] |
CHEN X F, ZHANG Y, ZHANG Q M, et al. Experimental investigation on micro-dynamic behavior of gas explosion suppression with SiO2 fine powders [J]. Theoretical and Applied Mechanics Letters, 2011, 1(3): 032004. DOI: 10.1063/2.1103204.
|
[116] |
程方明, 邓军, 文虎, 等. SiO2纳米粉体抑制瓦斯爆炸的试验研究 [J]. 煤炭科学技术, 2010, 38(8): 73–76. DOI: 10.13199/j.cst.2010.08.79.chengfm.026.CHENG F M, DENG J, WEN H, et al. Experiment study on SiO2 nanometer powder to restrain gas explosion [J]. Coal Science and Technology, 2010, 38(8): 73–76. DOI: 10.13199/j.cst.2010.08.79.chengfm.026.
|
[117] |
LI Y, CHEN X F, YUAN B H, et al. Synthesis of a novel prolonged action inhibitor with lotus leaf-like appearance and its suppression on methane/hydrogen/air explosion [J]. Fuel, 2022, 329: 125401. DOI: 10.1016/j.fuel.2022.125401.
|
[118] |
LIU A H, LU X E, ZHOU X Y, et al. Experimental investigation on suppression of methane explosion using KHCO3/zeolite composite powder [J]. Powder Technology, 2023, 415: 118157. DOI: 10.1016/j.powtec.2022.118157.
|
[119] |
WANG Y, CHENG Y S, YU M G, et al. Methane explosion suppression characteristics based on the NaHCO3/red-mud composite powders with core-shell structure [J]. Journal of Hazardous Materials, 2017, 335: 84–91. DOI: 10.1016/j.jhazmat.2017.04.031.
|
[120] |
SUN Y R, YUAN B H, CHEN X F, et al. Suppression of methane/air explosion by kaolinite-based multi-component inhibitor [J]. Powder Technology, 2019, 343: 279–286. DOI: 10.1016/j.powtec.2018.11.026.
|
[121] |
周崇, 喻健良, 刘润杰, 等. 多层网孔结构抑爆性能的研究进展 [J]. 煤矿安全, 2004, 35(3): 6–8. DOI: 10.3969/j.issn.1003-496X.2004.03.003.ZHOU C, YU J L, LIU R J, et al. Investigation development of the explosion-suppression characters of multiplayer mesh-hole construction [J]. Safety in Coal Mines, 2004, 35(3): 6–8. DOI: 10.3969/j.issn.1003-496X.2004.03.003.
|
[122] |
LV P F, PANG L, JIN J H, et al. Effects of hydrogen addition on the deflagration characteristics of hydrocarbon fuel/air mixture under a mesh aluminium alloy [J]. International Journal of Hydrogen Energy, 2016, 41(18): 7511–7517. DOI: 10.1016/j.ijhydene.2016.03.084.
|
[123] |
JIN K Q, DUAN Q L, CHEN J Y, et al. Experimental study on the influence of multi-layer wire mesh on dynamics of premixed hydrogen-air flame propagation in a closed duct [J]. International Journal of Hydrogen Energy, 2017, 42(21): 14809–14820. DOI: 10.1016/j.ijhydene.2017.03.232.
|
[124] |
王硕. 多孔材料对氢气/甲烷预混气体爆炸特性的影响研究 [D]. 重庆: 重庆科技学院, 2021.WANG S. Study on the effect of porous materials on the explosion characteristics of premixed hydrogen/methane [D]. Chongqing: Chongqing University of Science and Technology, 2021.
|
[125] |
唐毅, 员亚龙, 李开源, 等. 球形非金属材料对甲烷掺氢爆炸抑制机理研究 [J]. 高压物理学报, 2022, 36(6): 065202. DOI: 10.11858/gywlxb.20220609.TANG Y, YUAN Y L, LI K Y, et al. Explosion suppression performance of spherical non-metallic materials for methane hydrogen-doped syngas explosion [J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 065202. DOI: 10.11858/gywlxb.20220609.
|
[126] |
DUAN Y L, LONG F Y, LONG J, et al. Exploration of critical hydrogen-mixing ratio of quenching methane/hydrogen mixture deflagration under effect of porous materials in barrier tube [J]. International Journal of Hydrogen Energy, 2023, 48(58): 22288–22301. DOI: 10.1016/j.ijhydene.2023.03.157.
|
[127] |
苏洋, 罗振敏, 王涛. CO2/海泡石抑爆剂对氢气/甲烷爆炸特性参数的影响 [J]. 化工进展, 2022, 41(11): 5731–5736. DOI: 10.16085/j.issn.1000-6613.2022-0044.SU Y, LUO Z M, WANG T. Effect of CO2/sepiolite explosion suppressant on hydrogen/methane deflagration characteristic parameters [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5731–5736. DOI: 10.16085/j.issn.1000-6613.2022-0044.
|
[128] |
郑露露, 龙凤英, 温子阳, 等. 多孔材料-CO2对CH4/H2抑爆失效研究 [J]. 安全, 2022, 43(9): 24–30, 36. DOI: 10.19737/j.cnki.issn1002-3631.2022.09.003.ZHENG L L, LONG F Y, WEN Z Y, et al. Study on explosion suppression failure of porous material-CO2 to CH4/H2 [J]. Safety & Security, 2022, 43(9): 24–30, 36. DOI: 10.19737/j.cnki.issn1002-3631.2022.09.003.
|
[129] |
郑露露, 段玉龙, 李泽欢, 等. 多孔介质和CO2抑制低氢比甲烷爆炸的效应研究 [J]. 消防科学与技术, 2023, 42(8): 1051–1056. DOI: 10.3969/j.issn.1009-0029.2023.08.005.ZHENG L L, DUAN Y L, LI Z H, et al. Effect of porous media and CO2 on inhibiting methane explosion with low hydrogen ratio [J]. Fire Science and Technology, 2023, 42(8): 1051–1056. DOI: 10.3969/j.issn.1009-0029.2023.08.005.
|
[130] |
ZHANG T W, ZHANG S S, LIU H, et al. Experimental research on combustible gas/air explosion inhibition by dry water [J]. International Journal of Hydrogen Energy, 2023, 48(93): 36605–36620. DOI: 10.1016/j.ijhydene.2023.06.053.
|