基于PCA-BPNN的桥梁爆炸荷载时程预测

杜晓庆 何益平 邱涛 程帅 张德志

杜晓庆, 何益平, 邱涛, 程帅, 张德志. 基于PCA-BPNN的桥梁爆炸荷载时程预测[J]. 爆炸与冲击. doi: 10.11883/bzycj-2023-0343
引用本文: 杜晓庆, 何益平, 邱涛, 程帅, 张德志. 基于PCA-BPNN的桥梁爆炸荷载时程预测[J]. 爆炸与冲击. doi: 10.11883/bzycj-2023-0343
DU Xiaoqing, HE Yiping, QIU Tao, CHENG Shuai, ZHANG Dezhi. Prediction of blast loads on bridge girders based on PCA-BPNN[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0343
Citation: DU Xiaoqing, HE Yiping, QIU Tao, CHENG Shuai, ZHANG Dezhi. Prediction of blast loads on bridge girders based on PCA-BPNN[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0343

基于PCA-BPNN的桥梁爆炸荷载时程预测

doi: 10.11883/bzycj-2023-0343
详细信息
    作者简介:

    杜晓庆(1973- ),男,博士,教授,dxq@shu.edu.cn

    通讯作者:

    邱 涛(1994- ),男,博士,qiutao@shu.edu.cn

  • 中图分类号: O383

Prediction of blast loads on bridge girders based on PCA-BPNN

  • 摘要: 人工智能方法是预测爆炸荷载的新手段,但现有方法主要用于预测爆炸冲击波的超压峰值或冲量,而预测反射超压时程的研究不多。针对这一问题,以平面冲击波绕射桥梁主梁为对象,提出了一种基于主成分分析(principal components analysis, PCA)和误差反向传播神经网络(backpropagation neural network, BPNN)的桥梁爆炸冲击波反射超压时程的预测模型。该预测模型利用PCA降维处理时程数据,基于多任务学习的BPNN算法,提出了考虑超压峰值和冲量峰值影响的损失函数,使模型能有效预测不同入射超压下的桥梁冲击波荷载时程。通过分析多任务学习模型、多输入单输出模型和多输入多输出模型等三种BPNN模型,发现多任务学习模型的预测精度最高,而多输入多输出模型难以有效适应当前预测任务需求。采用多任务学习模型预测得到的桥梁表面各测点位置的反射超压时程、超压峰值精度较高,R2分别为0.792和0.987,作用在箱梁上的合力时程和扭矩时程预测值也与数值模拟值较为吻合。同时,该模型在对内插值预测的表现优于外推值预测,但其在预测外推值方面同样展现出了一定的能力。
  • 图  1  主梁表面测点布置示意图

    Figure  1.  Schematic diagram of surface measurement point layout on the main beam

    图  2  计算域与边界条件

    Figure  2.  Computational domain and boundary conditions

    图  3  自由场超压时程曲线

    Figure  3.  Free-field overpressure time history curve

    图  4  PCA-BPNN训练和预测流程图

    Figure  4.  Process of training and predicting for PCA-BPNN

    图  5  累积方差解释率随主成分数量的变化

    Figure  5.  Variation of cumulative variance contribution with the number of principal components

    图  6  R2分数随主成分数量的变化

    Figure  6.  Variation of R2 score with the number of principal components

    图  7  多输出反向传播神经网络

    Figure  7.  Multi-output BPNN

    图  8  单输出反向传播神经网络

    Figure  8.  Single-output BPNN

    图  9  输入输出变量之间的相关矩阵

    Figure  9.  Correlation matrix between input and output

    图  10  K折交叉验证示意图

    Figure  10.  Schematic diagram of K-fold cross-validation

    图  11  入射超压0.3 MPa下测点的超压和冲量时程曲线

    Figure  11.  Pressure and impulse time histories at measurement points under 0.3 MPa incident overpressure

    图  12  入射超压0.8 MPa下测点超压和冲量时程曲线

    Figure  12.  Pressure and impulse time histories at measurement points under 0.8 MPa incident overpressure

    图  13  入射超压1.5 MPa下测点超压和冲量时程曲线

    Figure  13.  Pressure and impulse time histories at measurement points under 1.5 MPa incident overpressure

    图  14  入射超压0.3 MPa下箱梁合力和扭矩时程曲线

    Figure  14.  Resultant force and torque time histories of box girder under 0.3 MPa incident overpressure

    图  15  入射超压0.8 MPa下箱梁合力和扭矩时程曲线

    Figure  15.  Resultant force and torque time histories of box girder under 0.8 MPa incident overpressure

    图  16  入射超压1.5 MPa下箱梁合力和扭矩时程曲线

    Figure  16.  Resultant force and torque time histories of box girder under 1.5 MPa incident overpressure

    图  17  不同入射超压下模型超压峰值预测拟合图

    Figure  17.  Model overpressure peak prediction fit graph under different incident overpressures

    图  18  超压峰值的数值模拟值与预测值对比

    Figure  18.  Comparison of peak overpressure between numerical simulation and predictive values

    表  1  超压峰值的各模型预测评价指标

    Table  1.   Evaluation metrics for peak overpressure prediction models

    预测模型RMSEMAEMAPER2
    多输出模型1.0890.7883.105-0.386
    单输出模型0.1520.0920.2200.976
    多任务模型0.1150.0740.1800.987
    下载: 导出CSV

    表  2  冲量峰值的各模型预测评价指标

    Table  2.   Evaluation metrics for peak impulse prediction models

    预测模型RMSEMAEMAPER2
    多输出模型3.9702.8220.554-0.403
    单输出模型0.8660.6460.1330.934
    多任务模型0.6930.5420.1090.958
    下载: 导出CSV

    表  3  超压时程曲线的各模型预测评价指标

    Table  3.   Evaluation metrics of overpressure time-history prediction models

    预测模型RMSEMAEMAPER2
    多输出模型0.1730.068\-5.466
    单输出模型0.0690.015\0.753
    多任务模型0.0650.014\0.792
    下载: 导出CSV

    表  4  模型预测误差及经验公式计算误差对比

    Table  4.   Comparison of model prediction error and empirical formula calculation error

    方法 pi,max=0.1 MPa pi,max=0.5 MPa pi,max=1 MPa
    超压时程的R2 最大冲量的MAPE 超压时程的R2 最大冲量的MAPE 超压时程的R2 最大冲量的MAPE
    PCA-BPNN 0.81 0.124 0.92 0.052 0.46 0.262
    经验公式 −0.33 0.410 −2.05 0.573 −1.42 0.396
    下载: 导出CSV
  • [1] CLUBLEY S K. Non-linear long duration blast loading of cylindrical shell structures [J]. Engineering Structures, 2014, 59: 113–126. DOI: 10.1016/j.engstruct.2013.10.030.
    [2] DENNY J W, CLUBLEY S K. Long-duration blast loading & response of steel column sections at different angles of incidence [J]. Engineering Structures, 2019, 178: 331–342. DOI: 10.1016/j.engstruct.2018.10.019.
    [3] JIANG Y, ZHANG B, WANG L, et al. Dynamic response of polyurea coated thin steel storage tank to long duration blast loadings [J]. Thin-Walled Structures, 2021, 163: 107747. DOI: 10.1016/j.tws.2021.107747.
    [4] SAKURAI A. Blast wave theory [M]. Mathematics Research Center, United States Army, University of Wisconsin, 1964.
    [5] RIGBY S E, AKINTARO O I, FULLER B J, et al. Predicting the response of plates subjected to near-field explosions using an energy equivalent impulse [J]. International Journal of Impact Engineering, 2019, 128(JUN.): 24–36. DOI: 10.1016/j.ijimpeng.2019.01.014.
    [6] KINGERY C N, BULMASH G. Airblast parameters from TNT spherical air burst and hemispherical surface burst [M]. US Army Armament and Development Center, Ballistic Research Laboratory, 1984.
    [7] RIGBY S E, TYAS A, FAY S D, et al. Validation of semi-empirical blast pressure predictions for far field explosions-is there inherent variability in blast wave parameters?[C]//Proceedings of the 6th International Conference on Protection of Structures against Hazards. Sheffield, 2014.
    [8] LARCHER M, CASADEI F. Explosions in complex geometries - a comparison of several approaches [J]. International Journal of Protective Structures, 2010, 1(2): 169–195. DOI: 10.1260/2041-4196.1.2.169.
    [9] DENNIS A A, PANNELL J J, SMYL D J, et al. Prediction of blast loading in an internal environment using artificial neural networks [J]. International Journal of Protective Structures, 2021, 12(3): 287–314. DOI: 10.1177/2041419620970570.
    [10] HANSEN O R, HINZE P, ENGEL D, et al. Using computational fluid dynamics (CFD) for blast wave predictions [J]. Journal of Loss Prevention in the Process Industries, 2010, 23(6): 885–906. DOI: 10.1016/j.jlp.2010.07.005.
    [11] REMENNIKOV A M, ROSE T A. Modelling blast loads on buildings in complex city geometries [J]. Computers & Structures, 2005, 83(27): 2197–2205. DOI: 10.1016/j.compstruc.2005.04.003.
    [12] SOHAIMI A S M, RISBY M S. Using Computational Fluid Dynamics (CFD) for Blast Wave Propagation under Structure [J]. Procedia Computer Science, 2016, 80: 1202–1211. DOI: 10.1016/j.procs.2016.05.463.
    [13] HASTIE T, TIBSHIRANI R, FRIEDMAN J H, et al. The elements of statistical learning: data mining, inference, and prediction[M]. New York: Springer, 2009.
    [14] FLOOD I, BEWICK B T, DINAN R J, et al. Modeling blast wave propagation using artificial neural network methods [J]. Advanced Engineering Informatics, 2009, 23(4): 418–423. DOI: 10.1016/j.aei.2009.06.005.
    [15] REMENNIKOV A M, ROSE T A. Predicting the effectiveness of blast wall barriers using neural networks [J]. International Journal of Impact Engineering, 2007, 34(12): 1907–1923. DOI: 10.1016/j.ijimpeng.2006.11.003.
    [16] BEWICK B, FLOOD I, CHEN Z. A neural-network model-based engineering tool for blast wall protection of structures [J]. International Journal of Protective Structures, 2011, 2(2): 159–176. DOI: 10.1260/2041-4196.2.2.159.
    [17] ALSHAMMARI O G, ISAAC O S, CLARKE S D, et al. Mitigation of blast loading through blast–obstacle interaction [J]. International Journal of Protective Structures, 2023, 14(3): 357–389. DOI: 10.1177/20414196221115869.
    [18] PANNELL J J, RIGBY S E, PANOUTSOS G. Physics-informed regularisation procedure in neural networks: An application in blast protection engineering [J]. International Journal of Protective Structures, 2022, 13(3): 555–578. DOI: 10.1177/20414196211073501.
    [19] PANNELL J J, RIGBY S E, PANOUTSOS G. Application of transfer learning for the prediction of blast impulse [J]. International Journal of Protective Structures, 2023, 14(2): 242–262. DOI: 10.177/20414196221096699.
    [20] LI Q, WANG Y, SHAO Y, et al. A comparative study on the most effective machine learning model for blast loading prediction: From GBDT to Transformer [J]. Engineering Structures, 2023, 276: 115310. DOI: 10.1016/j.engstruct.2022.115310.
    [21] Li Q, Wang Y, Li L, et al. Prediction of BLEVE loads on structures using machine learning and CFD [J]. Process Safety and Environmental Protection, 2023, 171: 914–925. DOI: 10.1016/j.psep.2023.02.008.
    [22] Huang Y, Zhu S, Chen S. Deep learning-driven super-resolution reconstruction of two-dimensional explosion pressure fields [J]. Journal of Building Engineering, 2023, 78: 107620. DOI: 10.1016/j.jobe.2023.107620.
    [23] 孙传猛, 裴东兴, 陈嘉欣, 等. 基于深度学习的爆炸冲击波信号重构模型 [J]. 计测技术, 2022, 42(02): 57–67. DOI: 10.11823/j.issn.1674-5795.2022.02.07.

    SUN C M, PEI D X, CHEN J X, et al. Model for reconstruction of explosion shock wave signals based on deep learning [J]. Measurement Technology, 2022, 42(02): 57–67. DOI: 10.11823/j.issn.1674-5795.2022.02.07.
    [24] QIU T, CHENG S, DU X Q, et al. Spacing effects on blast loading characteristics of two tandem square columns under planar shock waves [J]. Physics of Fluids, 2023, 35(12): 127116. DOI: 10.1063/5.0177869.
    [25] Karlos V, Larcher M, Solomos G. Analysis of the blast wave decay coefficient in the Friedlander equation using the Kingery-Bulmash data [J]. Joint Research Center, European Commission, 2015.
    [26] Zhou Z H. Machine learning [M]. Springer Nature, 2021. DOI: 10.1007/978-981-15-1967-3.
    [27] MISRA D. Mish: A self-regularized non-monotonic activation function [J]. arXiv preprint arXiv:, 1908, 08681: 2019. DOI: 10.48550/arXiv.1908.08681.
  • 加载中
图(18) / 表(4)
计量
  • 文章访问数:  197
  • HTML全文浏览量:  29
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-26
  • 修回日期:  2023-04-19
  • 网络出版日期:  2024-04-19

目录

    /

    返回文章
    返回