矩形管下气相螺旋爆轰的结构及传播方式

贾旭飞 张道平 董刚 归明月

贾旭飞, 张道平, 董刚, 归明月. 矩形管下气相螺旋爆轰的结构及传播方式[J]. 爆炸与冲击, 2024, 44(5): 051001. doi: 10.11883/bzycj-2023-0349
引用本文: 贾旭飞, 张道平, 董刚, 归明月. 矩形管下气相螺旋爆轰的结构及传播方式[J]. 爆炸与冲击, 2024, 44(5): 051001. doi: 10.11883/bzycj-2023-0349
JIA Xufei, ZHANG Daoping, DONG Gang, GUI Mingyue. Structure and propagation mode of gaseous spinning detonation in rectangular tube[J]. Explosion And Shock Waves, 2024, 44(5): 051001. doi: 10.11883/bzycj-2023-0349
Citation: JIA Xufei, ZHANG Daoping, DONG Gang, GUI Mingyue. Structure and propagation mode of gaseous spinning detonation in rectangular tube[J]. Explosion And Shock Waves, 2024, 44(5): 051001. doi: 10.11883/bzycj-2023-0349

矩形管下气相螺旋爆轰的结构及传播方式

doi: 10.11883/bzycj-2023-0349
基金项目: 国家自然科学基金(11872213)
详细信息
    作者简介:

    贾旭飞(1996- ),男,硕士研究生,15247152119@163.com

    通讯作者:

    董 刚(1970- ),男,博士,研究员,gdong@njust.edu.cn

  • 中图分类号: O381

Structure and propagation mode of gaseous spinning detonation in rectangular tube

  • 摘要: 为探索极限条件下矩形管道截面长宽比对于螺旋爆轰传播的影响,采用基于五阶WENO有限差分格式和两步总包反应模型的Euler方程,对三维气相螺旋爆轰波在矩形截面管道中的结构及其传播方式进行了数值研究。通过模拟不同管道截面尺寸下爆轰波的三波线运动轨迹、流场分布及高压印记结构,揭示了截面几何尺寸对气相临界爆轰波稳定传播的影响规律。结果表明:螺旋爆轰能在一定范围的小管道截面尺寸内通过横、竖两条三波线及其相互作用形成的斜三波线的运动来维持传播;随着管道截面尺寸长宽比的增加,螺旋爆轰在壁面上形成的高压印记逐渐由倾斜的条带结构变成局部点状分布结构,波阵面上的斜三波线的轨迹也由方管中沿着单一方向的圆周运动逐渐发展为具有转向机制的复杂运动轨迹;当长宽比进一步增加时,三维螺旋爆轰存在向二维结构的单头爆轰结构退化的趋势。
  • 图  1  表1参数的爆轰波线性稳定性分析结果

    Figure  1.  The results of linear stability analysis of chemical parameters used in table1

    图  2  三维计算模型示意图

    Figure  2.  Three-dimensional calculation model diagram

    图  3  不同管道宽度下的胞格结构

    Figure  3.  Cellular structure of detonation at different tube widths

    图  4  算例1在网格尺寸为10 μm下的计算结果

    Figure  4.  Computational results for case 1 with grid size of 10 μm

    图  5  算例1(1.0 mm×1.0 mm)中一个典型周期内的三波线运动轨迹

    Figure  5.  Variation of triple line trajectories at several moments in case 1 (1.0 mm×1.0 mm)

    图  6  算例1(1.0 mm×1.0 mm)几个时刻下旋转爆轰三维流场

    Figure  6.  Three-dimensional flow-field of spinning detonation at several moments in case 1 (1.0 mm×1.0 mm)

    图  7  壁面温度云图与压力等值线的平面展开图

    Figure  7.  Distributions of temperature and pressure contours on the unwrapped wall of tube

    图  8  不同管道截面尺寸下展开壁面上的高压印记

    Figure  8.  High-pressure imprints on the unwrapped wall for different tube cross-section sizes

    图  9  工况1、4~6下的高压印记对比

    Figure  9.  Comparison of high-pressure imprints for case 1, 4−6

    图  10  工况4(1.0 mm×0.8 mm)下一个典型周期内的三波线运动轨迹

    Figure  10.  Motion trajectories of triple lines in case 4 (1.0 mm × 0.8 mm) over one period

    图  11  工况5(1.0 mm×0.6 mm)下一个典型周期内的三波线运动轨迹

    Figure  11.  Motion trajectories of triple lines in case 5 (1.0 mm × 0.6 mm) over one period

    图  12  工况6(1.0 mm×0.4 mm)下一个典型周期内的三波线运动轨迹

    Figure  12.  Motion trajectories of triple lines in case 6 (1.0 mm × 0.4 mm) over one period

    图  13  不同算例下HTL和VTL的传播速度

    Figure  13.  Propagating velocities of HTL and VTL for different cases

    图  14  不同管道截面长宽比下的三波线(OTL)轨迹示意图

    Figure  14.  Schematic diagram of OTL trajectories under different tube cross-sectional aspect ratios

    表  1  初始条件与化学反应参数

    Table  1.   Initial conditions and chemical reaction parameters

    p0/MPa T0/K A1/[s∙(kg∙m−3)2.2] A2/[s∙(kg∙m−3)2] Ea/RT0 γ q2/RT0
    0.1 300 2×107 7×105 21 1.3 24.4
    下载: 导出CSV

    表  2  计算工况

    Table  2.   Computational cases

    工况 管道长/mm 管道宽/mm
    1 1.0 1.0
    2 0.8 0.8
    3 0.6 0.6
    4 1.0 0.8
    5 1.0 0.6
    6 1.0 0.4
    下载: 导出CSV

    表  3  工况1下的螺距尺寸

    Table  3.   Pitch dimensions under case 1

    网格尺寸/μm $ \bar P/D $
    10 3.090
    20 3.110
    40 3.120
    文献[2] 3.000
    文献[15] 3.128
    下载: 导出CSV
  • [1] CAMPBELL C, WOODHEAD D W. CCCCI.—the ignition of gases by an explosion-wave. part I. carbon monoxide and hydrogen mixtures [J]. Journal of the Chemical Society (Resumed), 1926, 129: 3010–3021. DOI: 10.1039/JR9262903010.
    [2] BONE W A, FRASER R P, WHEELER W H. A photographic investigation of flame movements in gaseous explosions Ⅶ—the phenomenon of spin in detonation [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1935, 235(746): 29–68. DOI: 10.1038/136974a0.
    [3] FAY J A. A mechanical theory of spinning detonation [J]. The Journal of Chemical Physics, 1952, 20(6): 942–950. DOI: 10.1063/1.1700655.
    [4] EDWARDS D H, PARRY D J, JONES A T. The structure of the wave front in spinning detonation [J]. Journal of Fluid Mechanics, 1966, 26(2): 321–336. DOI: 10.1017/S0022112066001265.
    [5] HUANG Z W, LEFEBVRE M H, VAN TIGGELEN P J. Experiments on spinning detonations with detailed analysis of the shock structure [J]. Shock Waves, 2000, 10(2): 119–125. DOI: 10.1007/s001930050185.
    [6] DOU H S, TSAI H M, KHOO B C, et al. Simulations of detonation wave propagation in rectangular ducts using a three-dimensional WENO scheme [J]. Combustion and Flame, 2008, 154(4): 644–659. DOI: 10.1016/j.combustflame.2008.06.013.
    [7] DOU H S, KHOO B C. Effect of initial disturbance on the detonation front structure of a narrow duct [J]. Shock Waves, 2010, 20(2): 163–173. DOI: 10.1007/s00193-009-0240-8.
    [8] TSUBOI N, ASAHARA M, ETO K, et al. Numerical simulation of spinning detonation in square tube [J]. Shock Waves, 2008, 18(4): 329–344. DOI: 10.1007/s00193-008-0153-y.
    [9] TSUBOI N, ETO K, HAYASHI A K. Detailed structure of spinning detonation in a circular tube [J]. Combustion and Flame, 2007, 149(1/2): 144–161. DOI: 10.1016/j.combustflame.2006.12.004.
    [10] TSUBOI N, HAYASHI A K. Numerical study on spinning detonations [J]. Proceedings of the Combustion Institute, 2007, 31(2): 2389–2396. DOI: 10.1016/j.proci.2006.07.262.
    [11] NAGAO T, ASAHARA M, HAYASHI A K, et al. Numerical analysis of spinning detonation dependency on initial pressure using AUSMDV scheme [C] // 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Grapevine: AIAA, 2013. DOI: 10.2514/6.2013-1177.
    [12] HUANG Y, JI H, LIEN F, et al. Numerical study of three-dimensional detonation structure transformations in a narrow square tube: from rectangular and diagonal modes into spinning modes [J]. Shock Waves, 2014, 24(4): 375–392. DOI: 10.1007/s00193-014-0499-2.
    [13] SUGIYAMA Y, MATSUO A. Numerical study of acoustic coupling in spinning detonation propagating in a circular tube [J]. Combustion and Flame, 2013, 160(11): 2457–2470. DOI: 10.1016/j.combustflame.2013.06.003.
    [14] SUGIYAMA Y, MATSUO A. Numerical analysis on acoustic coupling of spinning detonation in a square tube [J]. Journal of Thermal Science and Technology, 2016, 11(1): JTST0010. DOI: 10.1299/jtst.2016jtst0010.
    [15] WANG C, SHU C W, HAN W H, et al. High resolution WENO simulation of 3D detonation waves [J]. Combustion and Flame, 2013, 160(2): 447–462. DOI: 10.1016/j.combustflame.2012.10.002.
    [16] 王成, 韩文虎, 宁建国. 三维气相爆轰动态并行计算程序设计与开发 [J]. 计算力学学报, 2012, 29(6): 948–953. DOI: 10.7511/jslx201206022.

    WANG C, HAN W H, NING J G. Design and development of dynamic parallel computing code for three-dimensional gaseous detonation [J]. Chinese Journal of Computational Mechanics, 2012, 29(6): 948–953. DOI: 10.7511/jslx201206022.
    [17] WANG C, LI P, GAO Z, et al. Three-dimensional detonation simulations with the mapped WENO-Z finite difference scheme [J]. Computers & Fluids, 2016, 139: 105–111. DOI: 10.1016/j.compfluid.2016.04.016.
    [18] 沈洋, 申华, 刘凯欣. 矩形通道中三维气相爆轰的三波线结构分析[C]//北京力学会第21届学术年会暨北京振动工程学会第22届学术年会论文集. 北京: 北京力学会, 北京振动工程学会, 2015. DOI: 10.11883/1001-1455(2016)05-0577-06.
    [19] SHEN Y, SHEN H, LIU K X, et al. Three-dimensional detonation cellular structures in rectangular ducts using an improved CESE scheme [J]. Chinese Physics B, 2016, 25(11): 114702. DOI: 10.1088/1674-1056/25/11/114702.
    [20] XIAO Q, SOW A, MAXWELL B M, et al. Effect of boundary layer losses on 2D detonation cellular structures [J]. Proceedings of the Combustion Institute, 2021, 38(3): 3641–3649. DOI: 10.1016/j.proci.2020.07.068.
    [21] SHORT M, SHARPE G J. Pulsating instability of detonations with a two-step chain-branching reaction model: theory and numerics [J]. Combustion Theory and Modelling, 2003, 7(2): 401–416. DOI: 10.1088/1364-7830/7/2/311.
    [22] SHORT M. Multidimensional linear stability of a detonation wave at high activation energy [J]. SIAM Journal on Applied Mathematics, 1997, 57(2): 307–326. DOI: 10.1137/s0036139995288101.
    [23] SHORT M, DOLD J W. Linear stability of a detonation wave with a model three-step chain-branching reaction [J]. Mathematical and Computer Modelling, 1996, 24(8): 115–123. DOI: 10.1016/0895-7177(96)00144-6.
    [24] VASIL’EV A A. Near-limiting regimes of gaseous detonation [J]. Combustion, Explosion and Shock Waves, 1987, 23(3): 358–364. DOI: 10.1007/BF00748799.
    [25] VOITSEKHOVSKII B V, MITROFANOV V V, TOPCHIYAN M E. Structure of the detonation front in gases(survey) [J]. Combustion, Explosion and Shock Waves, 1969, 5(3): 267–273. DOI: 10.1007/BF00748606.
    [26] FICKETT W, DAVIS W C. Detonation [M]. Berkeley: University of California Press, 1979.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  252
  • HTML全文浏览量:  60
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-22
  • 修回日期:  2023-11-22
  • 网络出版日期:  2024-01-11
  • 刊出日期:  2024-05-08

目录

    /

    返回文章
    返回