Research on Damage and Cavitation Characteristics of Propellers under Far Field Shock Waves
-
摘要: 螺旋桨是舰船推进系统的核心部件,其运动稳定性和效率直接影响着舰船的性能。当前推进轴系抗冲击研究多将螺旋桨等效成均质圆盘忽略其结构特征,不能准确得到水下爆炸作用下螺旋桨的瞬态毁伤特征。故本文考虑螺旋桨的结构特征,基于湿模态分析法得到实体建模优于壳体建模,开展了远场冲击波作用下螺旋桨物面空化冲击动响应及毁伤特征分析。并结合螺旋桨高速旋转状态下产生的水动力空化现象,进一步分析螺旋桨瞬态毁伤特征规律。研究表明:在0度与90度攻角下,冲击波入射波作用于螺旋桨表面的物面载荷更高,但存在一个上限值,其与螺旋桨结构特征有关。在计及水动力空化状态下,桨叶的应力水平变化较为一致;桨叶主要塑性损伤区为叶根处,但存在局部塑性和完全塑性两种模式。本文探讨了远场爆炸下螺旋桨毁伤与空化特征,研究结果可为推进轴系及螺旋桨抗冲击防护提供参考。
-
关键词:
Abstract: Propellers serve as pivotal components within ship propulsion systems, directly influencing a vessel's performance through their stability and efficiency. Current research on the resilience of propulsion shafts often simplifies propellers to homogenous discs, neglecting their structural intricacies. This approach fails to accurately capture the transient damage features of propellers under the effects of underwater explosion. Therefore, this paper takes into consideration the propeller's structural characteristics. By initially employing wet modal analysis, the study determines that solid modeling outperforms shell modeling. It investigates the response and damage characteristics of propeller surfaces under the influence of far-field shockwaves while considering the propeller's structural attributes. The paper also analyzes the transient damage characteristics of propellers in conjunction with the hydrodynamic cavitation state generated during high-speed propeller rotation. The research findings demonstrate that at attack angles of 0 degrees and 90 degrees, surface loads on the propeller due to shockwave incidence are higher, but they exhibit an upper limit that correlates with the propeller's structural features. When accounting for the hydrodynamic cavitation state, stress levels on the blades remain consistently uniform. The primary plastic damage zone on the blades is near the root, showcasing both local and complete plastic deformation modes. This paper delves into the damage and cavitation characteristics of propellers under far-field explosions, and its results offer valuable insights for protecting propulsion shafts and propellers against shock impacts.-
Key words:
- Underwater Explosion /
- Propeller /
- Damage characteristics /
- Numerical simulation /
- Cavitation effect
计量
- 文章访问数: 166
- HTML全文浏览量: 7
- PDF下载量: 77
- 被引次数: 0