Experimental and numerical study of G-UHPC composite slab against contact blast
-
摘要: 为提升工程结构的抗爆安全性,同时降低水泥基超高性能混凝土高水泥用量对环境的不利影响,提出了一种基于地聚物超高性能混凝土的新型复合板,通过现场爆炸试验和数值模拟研究了该复合板在接触爆炸荷载作用下的动态响应与破坏机理。共测试了1块普通混凝土板和3块地聚物超高性能混凝土复合板,其中地聚物超高性能混凝土复合板由地聚物超高性能混凝土、钢丝网和吸能层制备而成。研究结果表明:采用地聚物超高性能混凝土代替普通混凝土能够有效提升混凝土板的抗爆性能;吸能层材料的高可压缩性和低抗剪强度是造成冲切破坏的主要原因;随着聚氨酯泡沫板层数的增加,复合板的爆坑深度增加,板底跨中位移增大;对复合板进行抗爆设计时,必须考虑吸能泡沫材料的可压缩性及其与地聚物超高性能混凝土之间的波阻抗匹配问题,才能有效提升复合板的抗爆性能。
-
关键词:
- 地聚物超高性能混凝土 /
- 吸能泡沫材料 /
- 接触爆炸 /
- 抗爆性能
Abstract: In order to improve the blast resistance performance of engineering structures to ensure the safety of important targets and reduce the adverse effects of high cement content on the environment of cement-based ultra-high performance concrete, a new type of composite slab based on geopolymer ultra-high performance concrete (G-UHPC) is proposed. Three G-UHPC composite slabs were prepared with G-UHPC, steel wire mesh, and energy-absorbing foam materials, and an ordinary concrete slab was prepared with C40 concrete. Explosion tests were carried out in the field to verify the blast resistance performance of the new G-UHPC composite slab. The crater diameter, depth, and spalling of each specimen under a 0.4 kg TNT contact explosion were obtained, and the blast resistance performance and failure mode were analyzed. The effects of G-UHPC, steel wire mesh, and energy-absorbing foam materials on the blast resistance performance of concrete slabs were discussed. Based on the explosion test results, a refined finite element model was established using LS-DYNA finite element analysis software and numerical simulation analysis was conducted. The effectiveness of the numerical model was verified by comparing the experimental results with the simulation analysis results. On this basis, the model was used to further analyze the impact of G-UHPC and steel wire mesh on the blast resistance performance of concrete slabs. The failure process of composite slabs was analyzed by simulating the propagation of explosive waves in energy-absorbing foam-reinforced G-UHPC composite slabs, and the failure mechanism of G-UHPC composite slabs was revealed. A parameter analysis was carried out to further study the blast resistance performance of the G-UHPC composite slab. Based on the damage morphology of the G-UHPC composite plate, the mid-span displacement of the plate bottom and the energy absorption of the energy-absorbing layer, the influence of the energy-absorbing foam material layout on the blast resistance performance of the G-UHPC composite slab was discussed. The research results indicate that replacing ordinary concrete with G-UHPC can effectively improve the blast resistance of concrete slabs, and steel wire mesh can reduce the degree of blast pits and peeling damage of concrete slabs. The blast resistance design of composite slabs must consider the compressibility of energy-absorbing foam material and its matching with the wave impedance of G-UHPC, to have a favorable impact on the blast resistance performance of composite slabs. The high compressibility and low shear strength of energy-absorbing foam are the main reasons for the punching failure of concrete slabs. The increase in the number of polyurethane foam plates will lead to the reduction of the blast resistance performance of the concrete slab, which is specifically reflected in the increase of the depth of the explosion pit and the increase of the displacement of the bottom span of the slab. -
表 1 高炉矿渣、F级粉煤灰和硅灰的化学成分(质量分数)
Table 1. Chemical composition of blast furnace slag, F grade fly ash and silica fume (mass fraction)
% 材料 CaO SiO2 Al2O3 MgO K2O Fe2O3 Na2O SO3 其他成分 LOI 矿渣 43.739 25.318 13.076 7.539 0.343 0.362 0.401 2.373 6.485 1.40 粉煤灰 11.02 52.87 22.14 4.23 2.90 4.23 0.96 0.08 2.05 1.24 硅灰 0.3 94.7 1.2 0.7 0.9 0.9 1.3 3.45 注:LOI指在材料在1000℃时的烧失量。 表 2 G-UHPC的配合比
Table 2. Mix ratio of G-UHPC
矿渣 粉煤灰 硅灰 细砂 中砂 氢氧化钠 硅酸钠溶液 水 1.000 0.100 0.160 0.602 0.458 0.0743 0.312 0.384 注:表中数据为各组分的质量比,细砂的粒径范围为5.2 μm~0.212 mm,中砂的粒径范围为0.212~0.830 mm。 表 3 3003级铝合金的力学性能参数
Table 3. Mechanical properties of 3003 grade aluminum alloy
屈服强度/MPa 杨氏模量/GPa 泊松比 剪切模量/GPa 175 69 0.3 25.9 表 4 铝蜂窝芯的几何参数与平台应力
Table 4. Geometrical parameters and platform stress of aluminum honeycomb
材料 边长/mm 胞元长度/mm 壁厚/mm 平台应力/MPa 3003级铝合金 5 8.7 0.06 0.5 表 5 聚氨酯泡沫材料性能
Table 5. Material properties of polyurethane foam plates
密度/(kg·m−3) 压实应变 屈服应变 平台应力/MPa 70 0.64 0.082 0.59 表 6 钢筋和钢丝网的材料性能参数
Table 6. Material parameters of steel bar and wire mesh
材料 密度/(kg·m−3) 泊松比 屈服强度/MPa 抗拉强度/MPa 弹性模量/GPa 钢筋 7850 0.28 428.3 615.8 208 钢丝网 7850 0.28 800 1400 205 表 7 接触爆炸试验工况
Table 7. Contact explosion test conditions
序号 试件编号 材料 TNT装药量/kg 1 NC 普通混凝土板 0.4 2 G-10S 10层钢丝网(SWM)增强G-UHPC板 3 G-4P 4层聚氨酯泡沫板(PFP)增强G-UHPC板 4 G-2A2P 2层蜂窝铝板(HAP)+2层聚氨酯泡沫板(PFP)增强G-UHPC板 表 8 接触爆炸下高强钢纤维混凝土板的破坏模式[30]
Table 8. Failure modes of high strength steel fiber reinforced concrete slab under contact explosion[30]
破坏模式 破坏图像 特点 爆炸成坑 在爆炸处形成爆炸坑,其他部分无宏观破坏现象,板背面无可视裂纹,锤击实声。 临界震塌 爆炸处不仅形成爆炸坑,在背面爆心投影点附近可以看到放射状微小裂纹,锤击实声。 爆炸震塌 爆炸坑加重,以背面爆心投影点为中心出现严重的震塌破坏,有环形裂缝,裂缝边有掉块。 临界贯穿 爆坑和震塌相互搭接,清理前看不到贯穿孔,但可看到贯穿孔被混凝土碎片堵住,清理后爆坑与震塌坑贯穿。 爆炸贯穿 迎爆面爆坑和背爆面震塌相互贯通,在不清理的情况下贯穿口无任何混凝土碎片残留。 表 9 试验和数值模拟结果汇总
Table 9. Summary of experimental and numerical results
研究方式 试件编号 爆坑直径/mm 爆坑深度/mm 剥落直径/mm 剥落深度/mm 破坏模式 试验 NC 357.5 85 667.5 100 临界贯穿 G-10S 327.5 30 675.0 10 爆炸震塌 G-4P 311.3 120 377.5 80 爆炸贯穿 G-2A2P 311.3 55 0 0 临界震塌 模拟 NC 256.4 80 670.8 120 临界贯穿 G-UHPC 220.3 55 663.2 120 爆炸震塌 G-10S 286.6 38 678.5 100 爆炸震塌 NC-10S 301.2 60 766.2 107 爆炸震塌 G-4P 353.2 99 390.9 101 爆炸贯穿 G-2A2P 321.9 62 0 0 临界震塌 表 10 数值模拟参数分析说明
Table 10. Description of numerical simulation parameter analysis
布置顺序(由上往下) 试件编号 备注 PFP-HAP G-1P3A 1层泡沫板+3层铝板增强G-UHPC板 G-2P2A 2层泡沫板+2层铝板增强G-UHPC板 G-3P1A 3层泡沫板+1层铝板增强G-UHPC板 G-4P 4层泡沫板增强G-UHPC板 HAP-PFP G-1A3P 1层铝板+3层泡沫板增强G-UHPC板 G-2A2P 2层铝板+2层泡沫板增强G-UHPC板 G-3A1P 3层铝板+1层泡沫板增强G-UHPC板 G-4A 4层铝板增强G-UHPC板 -
[1] DRDLOVÁ M, POPOVIČ M, KOUTNÝ O. Blast resistance of hybrid fibre reinforced concrete containing polyvinyl alcohol, polypropylene and steel fibres with various shape parameters [J]. The European Physical Journal: Special Topics, 2018, 227(1): 111–126. DOI: 10.1140/epjst/e2018-00061-y. [2] 高海莹, 刘中宪, 杨烨凯, 等. 泡沫铝防护钢筋混凝土板的抗爆性能 [J]. 爆炸与冲击, 2019, 39(2): 023101. DOI: 10.11883/bzycj-2018-0284.GAO H Y, LIU Z X, YANG Y K, et al. Blast-resistant performance of aluminum foam-protected reinforced concrete slabs [J]. Explosion and Shock Waves, 2019, 39(2): 023101. DOI: 10.11883/bzycj-2018-0284. [3] 周颖, 黄广炎, 王涛, 等. 多孔聚氨酯基复合削爆屏障的防护性能 [J]. 爆炸与冲击, 2023, 43(10): 105101. DOI: 10.11883/bzycj-2022-0375.ZHOU Y, HUANG G Y, WANG T, et al. Blast mitigation performance of porous polyurethane-based composite explosion-proof barrier [J]. Explosion and Shock Waves, 2023, 43(10): 105101. DOI: 10.11883/bzycj-2022-0375. [4] ZHANG P W, LI X, WANG Z H, et al. Dynamic blast loading response of sandwich beam with origami-inspired core [J]. Results in Physics, 2018, 10: 946–955. DOI: 10.1016/j.rinp.2018.07.043. [5] LIAO Q, YU J T, XIE X X, et al. Experimental study of reinforced UHDC-UHPC panels under close-in blast loading [J]. Journal of Building Engineering, 2022, 46: 103498. DOI: 10.1016/j.jobe.2021.103498. [6] 张海, 徐慎春, 田慧. 超高性能钢筋混凝土与普通钢筋混凝土柱结构抗爆性能的比较研究 [J]. 混凝土与水泥制品, 2014(7): 44–46. DOI: 10.19761/j.1000-4637.2014.07.012.ZHANG H, XU S C, TIAN H. Comparative study on antiknock performance of ultra high performance reinforced concrete column and ordinary reinforced concrete column [J]. China Concrete and Cement Products, 2014(7): 44–46. DOI: 10.19761/j.1000-4637.2014.07.012. [7] AMBILY P S, RAVISANKAR K, UMARANI C, et al. Development of ultra-high-performance geopolymer concrete [J]. Magazine of Concrete Research, 2014, 66(2): 82–89. DOI: 10.1680/macr.13.00057. [8] XU S C, YUAN P C, LIU J, et al. Development and preliminary mix design of ultra-high-performance concrete based on geopolymer [J]. Construction and Building Materials, 2021, 308: 125110. DOI: 10.1016/j.conbuildmat.2021.125110. [9] KATHIRVEL P, SREEKUMARAN S. Sustainable development of ultra high performance concrete using geopolymer technology [J]. Journal of Building Engineering, 2021, 39: 102267. DOI: 10.1016/j.jobe.2021.102267. [10] KARIMIPOUR A, DE BRITO J. RETRACTED: influence of polypropylene fibres and silica fume on the mechanical and fracture properties of ultra-high-performance geopolymer concrete [J]. Construction and Building Materials, 2021, 283: 122753. DOI: 10.1016/j.conbuildmat.2021.122753. [11] 张书政, 龚克成. 地聚合物 [J]. 材料科学与工程学报, 2003, 21(3): 430–436. DOI: 10.3969/j.issn.1673-2812.2003.03.030.ZHANG S Z, GONG K C. Geopolymer [J]. Journal of Materials Science and Engineering, 2003, 21(3): 430–436. DOI: 10.3969/j.issn.1673-2812.2003.03.030. [12] MENG Q F, WU C Q, SU Y, et al. Experimental and numerical investigation of blast resistant capacity of high performance geopolymer concrete panels [J]. Composites Part B: Engineering, 2019, 171: 9–19. DOI: 10.1016/j.compositesb.2019.04.010. [13] YUAN P C, XU S C, LIU J, et al. Experimental investigation of G-HPC-based sandwich walls incorporated with metallic tube core under contact explosion [J]. Archives of Civil and Mechanical Engineering, 2022, 22(4): 155. DOI: 10.1007/s43452-022-00477-7. [14] LIU J, LIU C, XU S C, et al. G-UHPC slabs strengthened with high toughness and lightweight energy absorption materials under contact explosions [J]. Journal of Building Engineering, 2022, 50: 104138. DOI: 10.1016/j.jobe.2022.104138. [15] 魏广帅, 汪维, 杨建超, 等. POZD涂覆钢板加固钢筋混凝土板抗爆性能研究 [J]. 材料导报, 2023, 37(21): 220300007. DOI: 10.11896/cldb.22030007.WEI G S, WANG W, YANG J C, et al. Study on explosion resistance of reinforced concrete slab strengthened with POZD coated steel plate [J]. Materials Reports, 2023, 37(21): 220300007. DOI: 10.11896/cldb.22030007. [16] 周宏元, 贾昆程, 王小娟, 等. 负泊松比三明治结构填充泡沫混凝土的面内压缩性能 [J]. 复合材料学报, 2020, 37(8): 2005–2014. DOI: 10.13801/j.cnki.fhclxb.20191207.001.ZHOU H Y, JIA K C, WANG X J, et al. In-plane compression properties of negative Poisson’s ratio sandwich structure filled with foam concrete [J]. Acta Materiae Compositae Sinica, 2020, 37(8): 2005–2014. DOI: 10.13801/j.cnki.fhclxb.20191207.001. [17] LI Q M, MAGKIRIADIS I, HARRIGAN J J. Compressive strain at the onset of densification of cellular solids [J]. Journal of Cellular Plastics, 2006, 42(5): 371–392. DOI: 10.1177/0021955X06063519. [18] HALLQUIST J O. LS-DYNA keyword user’s manual [M]. Livermore: Livermore Software Technology Corporation, 2021. [19] LIN X S, ZHANG Y X, HAZELL P J. Modelling the response of reinforced concrete panels under blast loading[J]. Materials & Design (1980–2015), 2014, 56: 620–628. DOI: 10.1016/j.matdes.2013.11.069. [20] QI C, REMENNIKOV A, PEI L Z, et al. Impact and close-in blast response of auxetic honeycomb-cored sandwich panels: experimental tests and numerical simulations [J]. Composite Structures, 2017, 180: 161–178. DOI: 10.1016/j.compstruct.2017.08.020. [21] YAMAGUCHI M, MURAKAMI K, TAKEDA K, et al. Blast resistance of double-layered reinforced concrete slabs composed of precast thin plates [J]. Journal of Advanced Concrete Technology, 2011, 9(2): 177–191. DOI: 10.3151/jact.9.177. [22] LI L, ZHANG F, LI J H, et al. Computational analysis of sandwich panels with graded foam cores subjected to combined blast and fragment impact loading [J]. Materials, 2023, 16(12): 4371. DOI: 10.3390/ma16124371. [23] SHI Y C, LI Z X, HAO H. A new method for progressive collapse analysis of RC frames under blast loading [J]. Engineering Structures, 2010, 32(6): 1691–1703. DOI: 10.1016/j.engstruct.2010.02.017. [24] WU H, LI Y C, FANG Q, et al. Scaling effect of rigid projectile penetration into concrete target: 3D mesoscopic analyses [J]. Construction and Building Materials, 2019, 208: 506–524. DOI: 10.1016/j.conbuildmat.2019.03.040. [25] PENG Y, WU H, FANG Q, et al. Geometrical scaling effect for penetration depth of hard projectiles into concrete targets [J]. International Journal of Impact Engineering, 2018, 120: 46–59. DOI: 10.1016/j.ijimpeng.2018.05.010. [26] CUI J, SHI Y C, LI Z X, et al. Failure analysis and damage assessment of RC columns under close-in explosions [J]. Journal of Performance of Constructed Facilities, 2015, 29(5): B4015003. DOI: 10.1061/(ASCE)CF.1943-5509.0000766. [27] WANG C Z, WANG H X, SHANKAR K, et al. Dynamic failure behavior of steel wire mesh subjected to medium velocity impact: experiments and simulations [J]. International Journal of Mechanical Sciences, 2022, 216: 106991. DOI: 10.1016/j.ijmecsci.2021.106991. [28] BAO Y H, LEW H S, KUNNATH S K. Modeling of reinforced concrete assemblies under column-removal scenario [J]. Journal of Structural Engineering, 2014, 140(1): 04013026. DOI: 10.1061/(ASCE)ST.1943-541X.0000773. [29] 陈龙明, 李述涛, 陈叶青, 等. 配筋对超高性能混凝土抗爆性能的影响 [J]. 工程力学, 2023, 40(S1): 98–107. DOI: 10.6052/j.issn.1000-4750.2022.06.S042.CHEN L M, LI S T, CHEN Y Q, et al. Influence of reinforcement diameter and spacing on implosion resistance of ultra-high performance concrete [J]. Engineering Mechanics, 2023, 40(S1): 98–107. DOI: 10.6052/j.issn.1000-4750.2022.06.S042. [30] 李晓军, 郑全平, 杨益. 钢纤维钢筋混凝土板爆炸局部破坏效应 [J]. 爆炸与冲击, 2009, 29(4): 385–389. DOI: 10.11883/1001-1455(2009)04-0385-05.LI X J, ZHENG Q P, YANG Y. Local damage effects of steel fiber reinforced concrete plates subjected to contact explosion [J]. Explosion and Shock Waves, 2009, 29(4): 385–389. DOI: 10.11883/1001-1455(2009)04-0385-05. [31] ZHU F, CHOU C C, YANG K H. Shock enhancement effect of lightweight composite structures and materials [J]. Composites Part B: Engineering, 2011, 42(5): 1202–1211. DOI: 10.1016/j.compositesb.2011.02.014. [32] WU G, JI C, WANG X, et al. Blast response of clay brick masonry unit walls unreinforced and reinforced with polyurea elastomer [J]. Defence Technology, 2022, 18(4): 643–662. DOI: 10.1016/j.dt.2021.03.004.