磷酸铁锂电池热失控产物爆炸下限预测方法

袁帅 台枫 钱新明 程东浩

袁帅, 台枫, 钱新明, 程东浩. 磷酸铁锂电池热失控产物爆炸下限预测方法[J]. 爆炸与冲击. doi: 10.11883/bzycj-2023-0452
引用本文: 袁帅, 台枫, 钱新明, 程东浩. 磷酸铁锂电池热失控产物爆炸下限预测方法[J]. 爆炸与冲击. doi: 10.11883/bzycj-2023-0452
YUAN Shuai, TAI Feng, QIAN Xinming, CHENG Donghao. Prediction methods for lower explosion limit of thermal runaway products of lithium iron phosphate batteries[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0452
Citation: YUAN Shuai, TAI Feng, QIAN Xinming, CHENG Donghao. Prediction methods for lower explosion limit of thermal runaway products of lithium iron phosphate batteries[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0452

磷酸铁锂电池热失控产物爆炸下限预测方法

doi: 10.11883/bzycj-2023-0452
基金项目: 国家重点研发计划项目(2023YFC3009504);国家自然科学基金民航联合基金(U2033204);民航安全能力项目(xxx2146903446)
详细信息
    作者简介:

    袁 帅(1991- ),男,博士,工程师,yuanshuai@mail.castc.org.cn

    通讯作者:

    程东浩(1984- ),男,博士,副研究员,chengdh@mail.castc.org.cn

  • 中图分类号: O389; X932

Prediction methods for lower explosion limit of thermal runaway products of lithium iron phosphate batteries

  • 摘要: 为准确预测磷酸铁锂电池热失控产物的爆炸下限,在密闭压力容器内开展了磷酸铁锂电池热失控试验,结合热失控特性和气相色谱-质谱联用技术,计算了热失控产物气体组分,基于能量守恒方程和绝热火焰温度,建立磷酸铁锂电池热失控产物爆炸下限的预测模型,并验证了绝热火焰温度法、Le Chatelier法和Jones法的准确性,考察了电解液蒸汽对热失控产物爆炸下限的影响。结果表明,常温下Le Chatelier法计算的爆炸下限偏差最小,为1.14%,绝热火焰温度法偏差最大,为10.02%。在60%~100%荷电状态(state of charge, SOC)范围内,磷酸铁锂电池热失控气体的爆炸下限先升后降。当热失控产物考虑电解液蒸汽时,60% SOC磷酸铁锂电池热失控产物爆炸下限仅为3.93%,较未考虑电解液蒸汽热失控气体的爆炸下限降低了22.49%,这说明电解液蒸汽增加了磷酸铁锂电池热失控产物的爆炸风险。
  • 图  1  密闭压力容器示意图

    Figure  1.  Diagram of the closed pressure vessel

    图  2  100% SOC电池的热失控过程

    Figure  2.  Thermal runaway process of a battery with 100% SOC

    图  3  电池温度与电池温升速率的关系

    Figure  3.  Battery temperature vs battery temperature rise rate

    图  4  磷酸铁锂电池排气气体组分[10,22-23]

    Figure  4.  Vent gas species composition of lithium iron phosphate batteries [10,22-23]

    图  5  环境温度对H2/CO/CO2混合气体爆炸下限的影响

    Figure  5.  Effect of ambient temperature on lower explosion limit of H2/CO/CO2 gas mixtures

    图  6  电池热失控产物与热失控气体爆炸下限对比

    Figure  6.  Comparison of lower explosion limit between thermal runaway products of batteries and thermal runaway gases

    图  7  不同SOC下电池产气量

    Figure  7.  Amount of produced vent-gas under different SOCs

    表  1  热失控产物各组分在爆炸下限处的绝热火焰温度

    Table  1.   Adiabatic flame temperature of each component of the thermal runaway products at their lower explosion limit

    环境温度/℃绝热火焰温度/℃
    H2COCH4C2H4DMC60% SOC下热失控产物80% SOC下热失控产物100% SOC下热失控产物
    25354.01118.41207.31096.81161.0833.1792.1698.6
    50372.51144.71208.81099.41163.0842.5802.8710.9
    75363.91124.01211.01102.41168.0841.1800.1707.0
    100408.41126.51211.71105.71171.0860.7821.8733.5
    下载: 导出CSV
  • [1] 高飞, 朱艳丽, 齐创, 等. 锂离子电池安全事故激源浅析 [J]. 电源技术, 2019, 43(3): 453–457. DOI: 10.3969/j.issn.1002-087X.2019.03.029.

    GAO F, ZHU Y L, QI C, et al. Excitation source analysis of lithium ion batteries safety accidents [J]. Chinese Journal of Power Sources, 2019, 43(3): 453–457. DOI: 10.3969/j.issn.1002-087X.2019.03.029.
    [2] CHEN S C, WANG Z R, WANG J H, et al. Lower explosion limit of the vented gases from Li-ion batteries thermal runaway in high temperature condition [J]. Journal of Loss Prevention in the Process Industries, 2020, 63: 103992. DOI: 10.1016/j.jlp.2019.103992.
    [3] 张伟, 郝朝龙, 刘添添, 等. 航空压力环境对锂离子电池热解气体爆炸极限影响 [J]. 中国安全生产科学技术, 2022, 18(11): 155–162. DOI: 10.11731/j.issn.1673-193x.2022.11.022.

    ZHANG W, HAO C L, LIU T T, et al. Influence of aviation pressure environment on explosion limit of pyrolysis gas from lithium-ion batteries [J]. Journal of Safety Science and Technology, 2022, 18(11): 155–162. DOI: 10.11731/j.issn.1673-193x.2022.11.022.
    [4] 郭超超, 张青松. 锂离子电池热解气体爆炸极限测定及其危险性分析 [J]. 中国安全生产科学技术, 2016, 12(9): 46–49. DOI: 10.11731/j.issn.1673-193x.2016.09.008.

    GUO C C, ZHANG Q S. Determination on explosion limit of pyrolysis gas released by lithium-ion battery and its risk analysis [J]. Journal of Safety Science and Technology, 2016, 12(9): 46–49. DOI: 10.11731/j.issn.1673-193x.2016.09.008.
    [5] LI W F, WANG H W, ZHANG Y J, et al. Flammability characteristics of the battery vent gas: a case of NCA and LFP lithium-ion batteries during external heating abuse [J]. Journal of Energy Storage, 2019, 24: 100775. DOI: 10.1016/j.est.2019.100775.
    [6] WANG H B, XU H, ZHANG Z L, et al. Fire and explosion characteristics of vent gas from lithium-ion batteries after thermal runaway: a comparative study [J]. eTransportation, 2022, 13: 100190. DOI: 10.1016/j.etran.2022.100190.
    [7] BAIRD A R, ARCHIBALD E J, MARR K C, et al. Explosion hazards from lithium-ion battery vent gas [J]. Journal of Power Sources, 2020, 446: 227257. DOI: 10.1016/j.jpowsour.2019.227257.
    [8] JONES G W. Inflammability of mixed gases: Technical Paper 450 [R]. Washington: United States Covernment Printing Office, 1929.
    [9] HENRIKSEN M, VAAGSAETHER K, LUNDBERG J, et al. Laminar burning velocity of gases vented from failed Li-ion batteries [J]. Journal of Power Sources, 2021, 506: 230141. DOI: 10.1016/j.jpowsour.2021.230141.
    [10] FERNANDES Y, BRY A, DE PERSIS S. Identification and quantification of gases emitted during abuse tests by overcharge of a commercial Li-ion battery [J]. Journal of Power Sources, 2018, 389: 106–119. DOI: 10.1016/j.jpowsour.2018.03.034.
    [11] LARSSON F, BERTILSSON S, FURLANI M, et al. Gas explosions and thermal runaways during external heating abuse of commercial lithium-ion graphite-LiCoO2 cells at different levels of ageing [J]. Journal of Power Sources, 2018, 373: 220–231. DOI: 10.1016/j.jpowsour.2017.10.085.
    [12] FAN R J, WANG Z R, LU Y W, et al. Numerical analysis on the combustion characteristic of lithium-ion battery vent gases and the suppression effect [J]. Fuel, 2022, 330: 125450. DOI: 10.1016/j.fuel.2022.125450.
    [13] ZHANG Q S, LIU T T, HAO C L, et al. In situ Raman investigation on gas components and explosion risk of thermal runaway emission from lithium-ion battery [J]. Journal of Energy Storage, 2022, 56: 105905. DOI: 10.1016/j.est.2022.105905.
    [14] 杨娟, 牛江昊, 张青松. 循环老化对锂离子电池热失控气体爆炸危险性影响实验研究 [J]. 航空学报, 2024, 45(3): 428529. DOI: 10.7527/S1000-6893.2023.28529.

    YANG J, NIU J H, ZHANG Q S. Experimental research on the effect of cyclic aging on the detonation risk of thermal runaway gas explosion in lithium-ion batteries [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 428529. DOI: 10.7527/S1000-6893.2023.28529.
    [15] LIU P J, LIU C Q, YANG K, et al. Thermal runaway and fire behaviors of lithium iron phosphate battery induced by over heating [J]. Journal of Energy Storage, 2020, 31: 101714. DOI: 10.1016/j.est.2020.101714.
    [16] LIU X, REN D S, HSU H, et al. Thermal runaway of lithium-ion batteries without internal short circuit [J]. Joule, 2018, 2(10): 2047–2064. DOI: 10.1016/j.joule.2018.06.015.
    [17] 张弦, 霍怡廷, 李宇, 等. 一种近理想气体状态方程及其热力学性质计算 [J]. 当代化工研究, 2020(13): 19–22. DOI: 10.3969/j.issn.1672-8114.2020.13.009.

    ZHANG X, HUO Y T, LI Y, et al. Calculation of thermodynamic properties for a near-ideal gas state equation [J]. Modern Chemical Research, 2020(13): 19–22. DOI: 10.3969/j.issn.1672-8114.2020.13.009.
    [18] GOLUBKOV A W, SCHEIKL S, PLANTEU R, et al. Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes-impact of state of charge and overcharge [J]. RSC Advances, 2015, 5(70): 57171–57186. DOI: 10.1039/C5RA05897J.
    [19] KOCH S, FILL A, BIRKE K P. Comprehensive gas analysis on large scale automotive lithium-ion cells in thermal runaway [J]. Journal of Power Sources, 2018, 398: 106–112. DOI: 10.1016/j.jpowsour.2018.07.051.
    [20] ZHANG L, DUAN Q L, MENG X D, et al. Experimental investigation on intermittent spray cooling and toxic hazards of lithium-ion battery thermal runaway [J]. Energy Conversion and Management, 2022, 252: 115091. DOI: 10.1016/j.enconman.2021.115091.
    [21] COMAN P T, RAYMAN S, WHITE R E. A lumped model of venting during thermal runaway in a cylindrical Lithium cobalt oxide lithium-ion cell [J]. Journal of Power Sources, 2016, 307: 56–62. DOI: 10.1016/j.jpowsour.2015.12.088.
    [22] GOLUBKOV A W, FUCHS D, WAGNER J, et al. Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes [J]. RSC Advances, 2014, 4(7): 3633–3642. DOI: 10.1039/C3RA45748F.
    [23] ZHENG Y, QIAN K, LUO D, et al. Influence of over-discharge on the lifetime and performance of LiFePO4/graphite batteries [J]. RSC Advances, 2016, 6(36): 30474–30483. DOI: 10.1039/C6RA01677D.
    [24] 夏阳光, 陶刚, 张礼敬. 基于绝热火焰温度多元混合气体可燃性极限的理论预测 [J]. 中国安全生产科学技术, 2016, 12(9): 30–35. DOI: 10.11731/j.issn.1673-193x.2016.09.005.

    XIA Y G, TAO G, ZHANG L J. Theoretical prediction on flammable limit of multi-component gas mixture based on adiabatic flame temperature [J]. Journal of Safety Science and Technology, 2016, 12(9): 30–35. DOI: 10.11731/j.issn.1673-193x.2016.09.005.
    [25] 李国梁, 蒋军成, 潘勇. 基于绝热火焰温度混合气体爆炸下限的预测 [J]. 中国安全科学学报, 2011, 21(7): 57–61. DOI: 10.16265/j.cnki.issn1003-3033.2011.07.028.

    LI G L, JIANG J C, PAN Y. Prediction on lower explosive limit of mixed gases based on calculated adiabatic flame temperatures [J]. China Safety Science Journal, 2011, 21(7): 57–61. DOI: 10.16265/j.cnki.issn1003-3033.2011.07.028.
    [26] SHANG R X, LI G, WANG Z, et al. Experimental study on the lower flammability limit of H2/CO/air mixtures with N2 and CO2 dilution at elevated temperatures [J]. International Journal of Hydrogen Energy, 2020, 45(16): 10164–10175. DOI: 10.1016/j.ijhydene.2020.01.247.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  165
  • HTML全文浏览量:  21
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-19
  • 修回日期:  2024-04-19
  • 网络出版日期:  2024-04-30

目录

    /

    返回文章
    返回