High-efficiency assessment method of damage for building structures under explosions
-
摘要: 为综合评估战后建筑结构的毁伤等级,针对爆炸作用下典型地面建筑,即含填充墙钢筋混凝土(reinforced concrete,RC)框架结构,提出了损伤破坏和倒塌的高精度数值仿真分析方法,并通过RC结构爆炸试验、倒塌事故和砌体墙爆炸试验进行了充分验证;开展了典型3层原型RC框架结构在不同爆炸当量(25~200 kg TNT)下的内爆炸数值仿真,定量分析了爆炸冲击波在建筑结构内部的传播、结构损伤破坏和墙体飞散等。爆炸作用下建筑结构的高效毁伤评估流程为:结合镜像爆源和非线性叠加原理确定内爆炸荷载,基于等效单自由度方法评估梁、板、柱及墙体构件的毁伤等级,引入构件重要性系数加权确定房间毁伤等级,考虑房间功能及位置重要性评估整体结构的毁伤等级。高精度数值仿真分析与毁伤评估方法计算的典型RC框架结构的整体毁伤等级一致,即在25、100和200 kg TNT爆炸下RC结构分别呈现轻度、中度和重度毁伤,毁伤评估方法可缩短99%以上的计算耗时,兼具可靠性与时效性。Abstract: Damage assessment of building structures plays an important role in military operations and engineering protection design. However, there is a lack of high-efficiency and validated damage assessment methods due to the complexity, variety, and large size of building structures. Therefore, a structural damage assessment method was proposed based on the high-precision numerical simulation analysis, in which the blast loadings, as well as the damage degrees of members, rooms, and building structures, were comprehensively considered. Firstly, the typical explosion tests and collapse accidents of reinforced concrete (RC) structures and masonry walls were numerically reproduced to verify the reliability of the numerical simulation approach for masonry-infilled RC frame structures. Subsequently, the blast-resistant analysis of a typical three-story masonry-infilled RC frame structure was conducted under internal explosions of different charge weights (25−200 kg TNT), including the propagation of blast waves, structural damage, and scattering of infilled walls. Besides, the proposed high-efficiency assessment method exhibited four key characteristics: (1) the concept of mirror explosion source and the non-linear shock addition rules were combined to predict the internal blast loadings in central and adjacent rooms; (2) the damage degrees of structural and non-structural members, i.e., beams, slabs, columns, and infilled walls, were determined by the equivalent single degree of freedom method; (3) the importance factor of members was considered and weighted to evaluate the damage degree of the room; (4) the influence of usage and location of each room on the damage degree of the building structure was considered. Finally, the proposed assessment method was employed to predict the aforementioned explosion scenarios. It derives that the RC frame structures exhibit slight, moderate, and severe damage under the explosions of 25, 100, and 200 kg TNT, respectively. The predicted damage degrees are identical to the simulation results, while the calculation time is reduced by over 99%. Therefore, the proposed method possesses reliability and timeliness in damage assessment of building structures.
-
Key words:
- blast loadings /
- building structure /
- damage assessment method /
- damage and failure
-
构件类型 轻度毁伤判据 中度毁伤判据 重度毁伤判据 梁 0<xmax/L≤0.017 0.017<xmax/L≤0.053 xmax/L>0.053 板 0<xmax/L≤0.017 0.017<xmax/L≤0.053 xmax/L>0.053 柱 0<xmax/L≤0.009 0.009<xmax/L≤0.026 xmax/L>0.026 墙 0<xmax/L≤0.004 0.004<xmax/L≤0.009 xmax/L>0.009 表 2 RC梁跨中最大挠度的试验[13]与计算结果对比
Table 2. Comparison between test[13] and calculated maximum deflection at mid-span of RC beams
工况 装药量/kg 比例距离/(m·kg−1/3) 跨中最大挠度 试验[13]/mm 计算/mm 误差/% B2-1 0.51 0.44 35 32.03 −8.49 B2-2 0.45 0.50 25 24.19 −3.24 B2-3 0.36 0.57 9 7.13 −20.80 B2-4 0.75 0.40 40 44.96 12.40 表 3 砌体墙跨中最大挠度的试验[41]和计算结果对比
Table 3. Comparison between test[41] and calculated maximum deflection at mid-span of masonry walls
工况 装药量/kg 比例距离/(m·kg−1/3) 跨中最大挠度 试验[41]/mm 计算/mm 误差/% W-1 100 3.45 56.6 55.6 1.8 W-2 150 3.02 79.5 79.2 0.4 W-3 250 2.54 118.0 114.0 3.4 表 4 构件的重要性系数
Table 4. Importance factor of structural members
构件类型 ηR0 ηR 梁 1 内部框架梁0.5 边跨框架梁1 板 2 内部楼板1 屋面板2 柱 2 中柱0.5 边柱1 角柱2 填充墙 1 内部填充墙0.5 外部填充墙1 表 5 房间的使用功能重要性系数
Table 5. Importance factor for usage of rooms
功能重要性 重要性描述 η1 重要 房间用于作战指挥或通信,重要人员或设备常驻 2.0 常规 房间用于常规办公或住宿,一般人员或设备常驻 1.0 次要 房间用于辅助或临时办公 0.5 表 6 25 kg TNT爆炸作用下RC框架结构内2层中心房间的毁伤等级评估
Table 6. Damage degree assessment of central room at the 2nd floor of RC frame structure under explosion of 25 kg TNT
结构构件 pr,max/MPa te/ms xmax/L 构件毁伤等级 d ηR dηR 柱C1 3.4 4.2 0.0013 轻度 0.3 0.5 0.15 柱C2 3.4 4.2 0.0013 轻度 0.3 0.5 0.15 柱C3 3.4 4.2 0.0013 轻度 0.3 0.5 0.15 柱C4 3.4 4.2 0.0013 轻度 0.3 0.5 0.15 梁B1 10.0 1.7 0.0092 轻度 0.3 0.5 0.15 梁B2 10.0 1.7 0.0092 轻度 0.3 0.5 0.15 梁B3 4.5 4.2 0.0055 轻度 0.3 0.5 0.15 梁B4 4.5 4.2 0.0055 轻度 0.3 0.5 0.15 顶板 32.8 1.0 5.6 重度 1.0 1.0 1.00 底板 32.8 1.0 5.6 重度 1.0 1.0 1.00 墙W1 17.2 1.3 不收敛 重度 1.0 0.5 0.50 墙W2 17.2 1.3 不收敛 重度 1.0 0.5 0.50 墙W3 4.7 4.2 不收敛 重度 1.0 0.5 0.50 墙W4 4.7 4.2 不收敛 重度 1.0 0.5 0.50 总计 Dr=5.20/8.0=0.65(重度) 8.0 5.20 表 7 毁伤评估方法和高精度数值仿真分析方法的对比
Table 7. Comparison between damage assessment method and high-fidelity numerical simulation approach
爆炸工况 整体结构的毁伤等级 用时 仿真分析 毁伤评估方法 仿真分析/d 毁伤评估方法/h 25 kg TNT中心房间爆炸 轻度毁伤 轻度毁伤 7 0.4 100 kg TNT中心房间爆炸 中度毁伤 中度毁伤 9 0.6 200 kg TNT中心房间爆炸 重度毁伤 重度毁伤 10 0.7 -
[1] 中国小康网. 以色列空袭哈马斯总部大楼最新消息 7年来最大冲突巴以怎么了? [EB/OL]. (2021-05-14)[2024-01-07]. https://news.chinaxiaokang.com/guoji/2021/0514/1169680.html. [2] 网易新闻. 拦截失败!导弹2倍音速穿透乌决策中心大楼, 大量西方顾问被埋葬 [EB/OL]. (2023-06-24)[2024-01-07]. https://m.163.com/dy/article/I80UO0BU05563HR5.html. [3] 杨亚东, 李向东, 王晓鸣, 等. 钢筋混凝土结构内爆炸相似模型试验研究 [J]. 南京理工大学学报, 2016, 40(2): 135–141. DOI: 10.14177/j.cnki.32-1397n.2016.40.02.002.YANG Y D, LI X D, WANG X M, et al. Experimental study on similarity model of reinforced concrete structure under internal explosion [J]. Journal of Nanjing University of Science and Technology, 2016, 40(2): 135–141. DOI: 10.14177/j.cnki.32-1397n.2016.40.02.002. [4] 胡洋, 朱建芳, 朱锴. 长方体单腔室空腔环境内爆炸效应的实验研究 [J]. 爆炸与冲击, 2016, 36(3): 340–346. DOI: 10.11883/1001-1455(2016)03-0340-07.HU Y, ZHU J F, ZHU K. Experimental study on explosion effect in a closed single rectangular cavity [J]. Explosion and Shock Waves, 2016, 36(3): 340–346. DOI: 10.11883/1001-1455(2016)03-0340-07. [5] 杨亚东, 李向东, 王晓鸣. 长方体密闭结构内爆炸冲击波传播与叠加分析模型 [J]. 兵工学报, 2016, 37(8): 1449–1455. DOI: 10.3969/j.issn.1000-1093.2016.08.016.YANG Y D, LI X D, WANG X M. An analytical model for propagation and superposition of internal explosion shockwaves in closed cuboid structure [J]. Acta Armamentarii, 2016, 37(8): 1449–1455. DOI: 10.3969/j.issn.1000-1093.2016.08.016. [6] 柏小娜, 李向东, 杨亚东. 封闭空间内爆炸冲击波超压计算模型及分布特性研究 [J]. 爆破器材, 2015, 44(3): 22–26. DOI: 10.3969/j.issn.1001-8352.2015.03.005.BAI X N, LI X D, YANG Y D. Calculation model and the distribution of wave pressure under internal explosion in closed space [J]. Explosive Materials, 2015, 44(3): 22–26. DOI: 10.3969/j.issn.1001-8352.2015.03.005. [7] 何翔, 孙桂娟, 任新见, 等. 砖隔墙前爆炸泄漏空气冲击波工程算法 [J]. 科学技术与工程, 2020, 20(6): 2150–2154. DOI: 10.3969/j.issn.1671-1815.2020.06.006.HE X, SUN G J, REN X J, et al. Explosion-leakage air shock wave engineering algorithm in front of brick partition wall [J]. Science Technology and Engineering, 2020, 20(6): 2150–2154. DOI: 10.3969/j.issn.1671-1815.2020.06.006. [8] 何翔, 孙桂娟, 任新见, 等. 砖隔墙抗爆特性及泄漏空气冲击波效应 [J]. 科学技术与工程, 2020, 20(3): 899–903. DOI: 10.3969/j.issn.1671-1815.2020.03.005.HE X, SUN G J, REN X J, et al. Blast-resistance of brick partition wall and air leak shock wave effect [J]. Science Technology and Engineering, 2020, 20(3): 899–903. DOI: 10.3969/j.issn.1671-1815.2020.03.005. [9] 曹宇航, 张晓伟, 张庆明. 框架结构建筑物内爆炸冲击波传播规律研究 [J]. 兵器装备工程学报, 2022, 43(3): 189–195. DOI: 10.11809/bqzbgcxb2022.03.029.CAO Y H, ZHANG X W, ZHANG Q M. Study on the propagation characteristics of shock wave in frame construction buildings under internal explosion [J]. Journal of Ordnance Equipment Engineering, 2022, 43(3): 189–195. DOI: 10.11809/bqzbgcxb2022.03.029. [10] ANSYS. AUTODYN theory manual [M]. Fort Worth: Century Dynamics, 2005. [11] 张传爱, 方秦, 龚自明, 等. 内爆炸条件下爆炸波在建筑物内的传播规律研究 [C]//第22届全国结构工程学术会议论文集第Ⅲ册. 乌鲁木齐: 中国力学学会结构工程专业委员会, 2013: 307−312.ZHANG C A, FANG Q, GONG Z M, et al. Analysis on RC frame structure under internal explosion [C]//22nd National Academic Conference on Structural Engineering. Urumqi: Structural Engineering Professional Committee of the Chinese Society of Theoretical and Applied Mechanics, 2013: 307−312. [12] Livermore Software Technology Corporation (LSTC). LS-DYNA keyword user’s manual [M]. Livermore: LSTC, 2018. [13] 汪维. 钢筋混凝土构件在爆炸载荷作用下的毁伤效应及评估方法研究 [D]. 长沙: 国防科学技术大学, 2012.WANG W. Study on damage effects and assessments method of reinforced concrete structural members under blast loading [D]. Changsha: National University of Defense Technology, 2012. [14] 王辉明, 刘飞, 晏麓晖, 等. 接触爆炸荷载对钢筋混凝土梁的局部毁伤效应 [J]. 爆炸与冲击, 2020, 40(12): 121404. DOI: 10.11883/bzycj-2020-0171.WANG H M, LIU F, YAN L H, et al. Local damage effects of reinforced concrete beams under contact explosions [J]. Explosion and Shock Waves, 2020, 40(12): 121404. DOI: 10.11883/bzycj-2020-0171. [15] 高超, 宗周红, 伍俊. 爆炸荷载下钢筋混凝土框架结构倒塌破坏试验研究 [J]. 土木工程学报, 2013, 46(7): 9–20. DOI: 10.15951/j.tmgcxb.2013.07.012.GAO C, ZONG Z H, WU J. Experimental study on progressive collapse failure of RC frame structures under blast loading [J]. China Civil Engineering Journal, 2013, 46(7): 9–20. DOI: 10.15951/j.tmgcxb.2013.07.012. [16] WOODSON S C, BAYLOT J T. Structural collapse: quarter-scale model experiments: SL-99-8 [R]. Vicksburg: US Army Corps of Engineers, Engineer Research and Development Center, 1999. [17] HEGGELUND S, BREKKEN K, INGIER P, et al. Global response of a three-story building exposed to blast loading [J]. Proceedings, 2018, 2(8): 386. DOI: 10.3390/ICEM18-05211. [18] YANKELEVSKY D Z, SCHWARZ S, BROSH B. Full scale field blast tests on reinforced concrete residential buildings-from theory to practice [J]. International Journal of Protective Structures, 2013, 4(4): 565–590. DOI: 10.1260/2041-4196.4.4.565. [19] ZAPATA B J. Full-scale testing and numerical modeling of a multistory masonry structure subjected to internal blast loading [D]. Charlotte: University of North Carolina at Charlotte, 2012. [20] 曾繁, 肖桂仲, 冯晓伟, 等. 砌体结构长脉宽爆炸荷载损伤等级评估方法 [J]. 爆炸与冲击, 2021, 41(10): 105101. DOI: 10.11883/bzycj-2020-0399.ZENG F, XIAO G Z, FENG X W, et al. A damage assessment method for masonry structures subjected to long duration blast loading [J]. Explosion and Shock Waves, 2021, 41(10): 105101. DOI: 10.11883/bzycj-2020-0399. [21] 李光宇. 典型坚固目标毁伤效应数字化评估研究 [D]. 北京: 北京理工大学, 2016.LI G Y. Research on digital assessment of damage effect of typical solid target [D]. Beijing: Beijing Institute of Technology, 2016. [22] 陈旭光. 建筑物在侵爆作用下的累积毁伤评估 [D]. 长沙: 国防科技大学, 2019.CHEN X G. Cumulative damage assessment of buildings under penetration and explosion [D]. Changsha: National University of Defense Technology, 2019. [23] American Society of Civil Engineers. The Oklahoma city bombing: improving building performance through multi-hazard mitigation [R]. Washington: Federal Emergency Management Agency, Mitigation Directorate, 1996. [24] SHI Y C, XIONG W, LI Z X, et al. Experimental studies on the local damage and fragments of unreinforced masonry walls under close-in explosions [J]. International Journal of Impact Engineering, 2016, 90: 122–131. DOI: 10.1016/j.ijimpeng.2015.12.002. [25] 陈德, 吴昊, 徐世林, 等. 单向砌体填充墙激波管试验和动力行为分析 [J]. 爆炸与冲击, 2023, 43(8): 085103. DOI: 10.11883/bzycj-2023-0147.CHEN D, WU H, XU S L, et al. Shock tube tests and dynamic behavior analyses on one-way masonry-infilled walls [J]. Explosion and Shock Waves, 2023, 43(8): 085103. DOI: 10.11883/bzycj-2023-0147. [26] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010 [S]. 北京: 中国建筑工业出版社, 2010.Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of concrete structures: GB 50010—2010 [S]. Beijing: China Architecture & Building Press, 2010. [27] MANDER J B, PRIESTLEY M J N, PARK R. Theoretical stress-strain model for confined concrete [J]. Journal of Structural Engineering, 1988, 114(8): 1804–1826. DOI: 10.1061/(ASCE)0733-9445(1988)114:8(1804). [28] 吕晋贤, 吴昊, 方秦. 爆炸作用下高层框架结构倒塌分析与设计建议 [J]. 建筑结构学报, 2023, 44(11): 114–128. DOI: 10.14006/j.jzjgxb.2022.0454.LYU J X, WU H, FANG Q. Collapse analysis and design recommendations of high-rise frame structures under blast loadings [J]. Journal of Building Structures, 2023, 44(11): 114–128. DOI: 10.14006/j.jzjgxb.2022.0454. [29] CHEN D, WU H, FANG Q. Simplified micro-model for brick masonry walls under out-of-plane quasi-static and blast loadings [J]. International Journal of Impact Engineering, 2023, 174: 104529. DOI: 10.1016/j.ijimpeng.2023.104529. [30] Unified Facilities Criteria. Structures to resist the effects of accidental explosions: UFC 3-340-02 [S]. Washington: U. S. Department of Defense, 2008. [31] NEEDHAM C E. Blast waves [M]. New York: Springer, 2010. [32] 奥尔连科. 爆炸物理学 [M]. 孙承纬, 译. 北京: 科学出版社, 2011.ЛПОРЛЕНКО. Explosion physics [M]. Translated by SUN C W. Beijing: Science Press, 2011. [33] 北京工业学院八系《爆炸及其作用》编写组. 爆炸及其作用 [M]. 北京: 国防工业出版社, 1979.The Writing Group of Explosion and Its Effects in the Eighth Department of Beijing Institute of Technology. Explosion and its use [M]. Beijing: National Defense Industry Press, 1979. [34] 曹涛, 孙浩, 周游, 等. 近地爆炸冲击波传播特性数值模拟与应用 [J]. 兵器装备工程学报, 2020, 41(12): 187–191. DOI: 10.11809/bqzbgcxb2020.12.035.CAO T, SUN H, ZHOU Y, et al. Numerical simulation and application of propagation characteristics of shock wave near ground explosion [J]. Journal of Ordnance Equipment Engineering, 2020, 41(12): 187–191. DOI: 10.11809/bqzbgcxb2020.12.035. [35] WU C Q, HAO H. Modeling of simultaneous ground shock and air blast pressure on nearby structures from surface explosions [J]. International Journal of Impact Engineering, 2005, 31(6): 699–717. DOI: 10.1016/j.ijimpeng.2004.03.002. [36] International Atomic Energy Agency (IAEA). Safety reports series No 87, safety aspects of nuclear power plants in human induced external events: assessment of structures [R]. Vienna: International Atomic Energy Agency (IAEA), 2018. [37] 东南大学, 天津大学, 同济大学. 混凝土结构(上册): 混凝土结构设计原理 [M]. 7版. 北京: 中国建筑工业出版社, 2020.Southeast University, Tianjin University, Tongji University. Concrete structure (volume 1): principle of concrete structure design [M]. 7th ed. Beijing: China Architecture & Building Press, 2020. [38] 陈德, 吴昊, 方秦. 爆炸荷载作用下单向砌体填充墙动态响应计算方法 [J]. 建筑结构学报, 2023, 44(10): 197–210. DOI: 10.14006/j.jzjgxb.2022.0130.CHEN D, WU H, FANG Q. Dynamic responses calculation method of one-way masonry infill wall under blast loadings [J]. Journal of Building Structures, 2023, 44(10): 197–210. DOI: 10.14006/j.jzjgxb.2022.0130. [39] 杨卫忠. 砌体受压本构关系模型 [J]. 建筑结构, 2008, 38(10): 80–82. DOI: 10.19701/j.jzjg.2008.10.027.YANG W Z. Constitutive relationship model for masonry materials in compression [J]. Building Structure, 2008, 38(10): 80–82. DOI: 10.19701/j.jzjg.2008.10.027. [40] 肖遥, 底欣欣, 黄河. 砖砌体单轴压缩与拉伸应力应变关系 [J]. 世界地震工程, 2019, 35(1): 210–219.XIAO Y, DI X X, HUANG H. Stress-strain relationships of brick masonry under uniaxial compression and tension [J]. World Earthquake Engineering, 2019, 35(1): 210–219. [41] ABOU ZEID B M K. Experimental and analytical strategies to assess and improve the dynamic response of unreinforced concrete masonry walls under blast loading [D]. Hamilton: McMaster University, 2010. [42] 周旭. 导弹毁伤效能试验与评估 [M]. 北京: 国防工业出版社, 2014.ZHOU X. Test and evaluation on damage effectiveness of missile [M]. Beijing: National Defense Industry Press, 2014.