露天矿富水裂隙岩体台阶爆破的殉爆机理和防殉爆研究

费鸿禄 王天恒 荆广杰

费鸿禄, 王天恒, 荆广杰. 露天矿富水裂隙岩体台阶爆破的殉爆机理和防殉爆研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0064
引用本文: 费鸿禄, 王天恒, 荆广杰. 露天矿富水裂隙岩体台阶爆破的殉爆机理和防殉爆研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0064
FEI Honglu, WANG Tianheng, JING Guangjie. On mechanism and prevention of sympathetic detonation of bench blasting in water-rich fissure open-pit mine[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0064
Citation: FEI Honglu, WANG Tianheng, JING Guangjie. On mechanism and prevention of sympathetic detonation of bench blasting in water-rich fissure open-pit mine[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0064

露天矿富水裂隙岩体台阶爆破的殉爆机理和防殉爆研究

doi: 10.11883/bzycj-2024-0064
基金项目: 辽宁省教育厅基本科研项目(青年项目)基金(JYTQN2023206);江汉大学省部共建精细爆破国家重点实验室、江汉大学爆破工程湖北省重点实验室联合开发基金(PBSKL2023B12)
详细信息
    作者简介:

    费鸿禄(1963- ),男,博士,教授,博士生导师,feihonglu@126.com

    通讯作者:

    王天恒(1996- ),男,硕士研究生,532564788@qq.com

  • 中图分类号: O383

On mechanism and prevention of sympathetic detonation of bench blasting in water-rich fissure open-pit mine

  • 摘要: 殉爆现象会影响露天矿台阶爆破作业安全、边坡稳定性和爆破效果。在炸药冲击起爆机理基础上,并结合露天矿实际富水裂隙岩体台阶爆破振动监测结果,通过对比爆破振动信号波动差异来判别殉爆现象。为研究殉爆产生的机理和防殉爆方法,采用数值模拟和现场试验分析主发药量、裂隙宽度及药包之间的距离等参数对被发药包孔壁压力的影响。结果表明:孔壁冲击压力随着装药耦合系数的减小、炮孔间裂隙宽度(0.25~1.00 cm)的增大以及炮孔间距离的减小而提高。在裂隙位置装药使用阻波管、充填岩粉或设置空气间隔器,能显著降低通过富水裂隙传递到被发炮孔的冲击压力,并使其低于乳化炸药的起爆压力临界值。当炮孔内只有单条裂隙时,选择填充岩粉是便捷且有效防殉爆方法;当炮孔内有多条裂隙时,该试验条件下,炮孔内放置厚度为2.6 mm的阻波管是最佳防殉爆方法,并能保证爆破效果。
  • 图  1  元宝山露天煤矿地表水系图

    Figure  1.  Surface water system map of Yuanbaoshan open-pit coal mine

    图  2  易殉爆区炮孔的内壁照片

    Figure  2.  Photos of the inner wall of the blast hole in the susceptible sympathetic detonation zone

    图  3  易殉爆区炮孔内积水的照片

    Figure  3.  Photos of water accumulation in the blast hole in the susceptible sympathetic detonation zone

    图  4  宝马矿采空区示意图

    Figure  4.  Schematic representation of the goaf area in the Baoma coal mine

    图  5  不同爆心距处质点的3向峰值振动速度

    Figure  5.  The three-directional peak particle velocities at different distances from the blast center

    图  6  距爆心80.89 m处不同试验工况下测得的Z方向质点振动速度时程曲线

    Figure  6.  Z-directional particle vibration velocity-time curves measured at 80.89 m away from the blast center under different test conditions

    图  7  数值计算模型

    Figure  7.  Numerical calculation model

    图  8  监测点示意图

    Figure  8.  Schematic diagram of monitoring points

    图  9  炮孔间贯穿裂隙中水耦合条件下岩体爆破的应力云图

    Figure  9.  The stress cloud maps of rock blasting under water-coupled conditions in through-going cracks between blast holes

    图  10  无防护措施时被发药包内部不同单元的压力时程曲线

    Figure  10.  Pressure-time history curves of different elements in the acceptor charge without protective measurements

    图  11  不同炮孔间距条件下岩体爆破的应力云图

    Figure  11.  Stress distribution of rock blasting under different blast hole spacings

    图  12  无防护措施时被发药包内部F单元峰值压力随炮孔间距的变化

    Figure  12.  Variation of peak pressure of element F within the acceptor charge with blast hole spacing under unprotected conditions

    图  13  在炮孔间不同裂隙宽度的条件下岩体爆破的应力云图

    Figure  13.  Stress distribution of rock blasting under the condition of different crack widths between boreholes

    图  14  无防护措施时被发药包内部F单元的峰值压力随炮孔间裂隙宽度的变化

    Figure  14.  Variation of peak pressure of element F in the acceptor charge with crack width between blastholes under unprotected conditions

    图  15  不同主发药量条件下岩体爆破的应力云图

    Figure  15.  Stress distribution of rock blasting under the condition of different main charge masses

    图  16  无防护措施时被发药包内部F单元的峰值压力随主发药量的变化

    Figure  16.  Variation of peak pressure of element F in the acceptor charge with main charge mass under unprotected conditions

    图  17  主发炮孔放置阻波管位置示意图

    Figure  17.  Schematic diagram of the placement of a wave-blocked tube in the main blasting hole

    图  18  主发炮孔填塞岩粉位置示意图

    Figure  18.  Schematic diagram of the placement of the crushed rock powder in the main blasting hole

    图  19  阻波管防殉爆模型

    Figure  19.  The model with the wave-blocked tube for preventing sympathetic detonation

    图  20  在主发炮孔内安装不同厚度阻波管的条件下岩体爆破的应力分布

    Figure  20.  Stress distribution of rock blasting with wave-blocked tubes of different thicknesses installed in the main blast hole

    图  21  在主发炮孔内安装不同厚度阻波管的条件下被发药包内部单元F的压力时程曲线

    Figure  21.  Pressure-time history curves of element F inside the acceptor charge with wave-blocked tubes of different thicknesses installed in the main blast hole

    图  22  填塞岩粉的防殉爆模型

    Figure  22.  The model with filling rock powder for preventing sympathetic detonation

    图  23  在主发炮孔内填充不同材料的条件下岩体爆破的应力云图

    Figure  23.  Stress distribution of rock blasting with different materials filled in the main blast hole

    图  24  在主发炮孔内填充不同材料的条件下被发药包内部单元F的压力时程曲线

    Figure  24.  Pressure-time curves of element F within the acceptor charge with different materials filled in the main blast hole

    图  25  殉爆检测现场布置

    Figure  25.  Layout of sympathetic detonation detection site

    图  26  在主发炮孔内放置不同厚度阻波管的防殉爆试验振速时程曲线

    Figure  26.  Vibration velocity-time curves of preventing sympathetic detonation tests with wave-blocked tubes of different thicknesses in the main blast hole

    图  27  主发炮孔内不同填充材料条件下防殉爆试验振速时程曲线

    Figure  27.  The vibration velocity-time curves of preventing sympathetic detonation tests under different filling materials in the main blast hole

    表  1  现场试验参数

    Table  1.   Test parameters

    组号地质条件孔径/mm孔深/m单孔药量/kg排间延期/ms孔间延期/ms装药方式起爆方式
    1岩体裂隙水丰富20013.5966542分段装药逐孔起爆
    2岩体无裂隙水20013.5966542分段装药逐孔起爆
    下载: 导出CSV

    表  2  2#乳化炸药的材料参数[26]

    Table  2.   Material parameters of emulsion explosive #2[26]

    $ {\rho _{\text{e}}} $/(g·cm−3)A/GPaB/GPaR1R2ωEe0/GPaD/(km·s−1)
    1.20494.61.893.911.110.33.874.1
    下载: 导出CSV

    表  3  岩石的RHT模型材料参数[26]

    Table  3.   Rock material parameters of the RHT model[26]

    模型参数 说明 参数值 模型参数 说明 参数值
    ρr0/(g·cm−3) 初始密度 2.23 ε0c/s−1 参考压缩应变率 2.9×10-11
    fs* 相对抗剪强度 0.25 ε0t/s−1 参考拉伸应变率 2.9×10-12
    ft* 相对抗拉强度 0.23 εc/s−1 失效压缩应变率 1.5×1019
    G/GPa 剪切模量 0.22 εt/s−1 失效拉伸应变率 1.5×1019
    fc/MPa 单轴抗压强度 120.22 βc 压缩应变率指数 0.0076
    D1 损伤系数 0.10 βt 拉伸应变率指数 0.0094
    D2 损伤系数 1.00 A 失效面参数 1.40
    Q0 拉压-子午比参数 0.58 N 失效面指数 0.40
    α 初始空隙率 1.10 pel/MPa 压碎压力 82.12
    Np 孔隙度指数 3.20 pco/MPa 压实压力 4.00
    B0 状态方程参数 1.51 Af 残余强度面参数 0.85
    B1 状态方程参数 1.51 Nf 残余强度面参数 0.42
    下载: 导出CSV

    表  4  水介质材料及状态方程参数[28]

    Table  4.   Parameters of water material and state equation[28]

    ${\rho _{\text{w}}}$/(g·cm−3)C/(km·s−1)S1S2S3Ew$ {\gamma _0} $
    1.01.482.561.9861.226801
    下载: 导出CSV

    表  5  不同参数的数值模拟方案

    Table  5.   Numerical simulation schemes with different parameters

    方案 编号 炮孔间距/m 裂缝宽度/cm 装药量/kg 装药长度/m 填充长度/m
    Ⅰ-1 4 1.00 96 4.5 4
    Ⅰ-2 5
    Ⅰ-3 6
    Ⅰ-4 7
    Ⅰ-5 8
    Ⅱ-1 6 0.25 96 4.5 4
    Ⅱ-2 0.50
    Ⅱ-3 0.75
    Ⅱ-4 1.00
    Ⅱ-5 1.50
    Ⅱ-6 2.00
    Ⅲ-1 6 1.00 24 4.5 4
    Ⅲ-2 36
    Ⅲ-3 48
    Ⅲ-4 60
    Ⅲ-5 72
    Ⅲ-6 96
    下载: 导出CSV
  • [1] 王玉杰. 爆破工程 [M]. 武汉: 武汉理工大学出版社, 2007: 20–22.
    [2] DERIBAS A A, MEDVEDEV E A, RESHETNYAK Y A, et al. Detonation of emulsion explosives containing hollow microspheres [J]. Doklady Physics, 2003, 48(4): 163–165. DOI: 10.1134/1.1574370.
    [3] 李铮, 项续章, 郭梓熙. 各种炸药的殉爆安全距离 [J]. 爆炸与冲击, 1994, 14(3): 231–241. DOI: 10.11883/1001-1455(1994)03-0231-11.

    LI Z, XIANG X Z, GUO Z X. Various explosives of safety distance of unsympathetic detonation [J]. Explosion and Shock Waves, 1994, 14(3): 231–241. DOI: 10.11883/1001-1455(1994)03-0231-11.
    [4] 费鸿禄. 爆破理论及其应用 [M]. 2版. 北京: 煤炭工业出版社, 2018: 89–92.
    [5] 汪成运, 魏志丰, 何鹏鹏. 炸药殉爆的研究进展与展望 [J]. 爆破器材, 2022, 51(6): 1–8. DOI: 10.3969/j.issn.1001-8352.2022.06.001.

    WANG C Y, WEI Z F, HE P P. Research progress of sympathetic detonation of explosives [J]. Explosive Materials, 2022, 51(6): 1–8. DOI: 10.3969/j.issn.1001-8352.2022.06.001.
    [6] 余德运, 谢烽, 王旭耀. ANFO在炮孔中的殉爆起爆试验研究 [J]. 爆破器材, 2020, 49(5): 59–64. DOI: 10.3969/j.issn.1001-8352.2020.05.011.

    YU D Y, XIE F, WANG X Y. Experimental study on sympathetic detonation of ANFO in hole [J]. Explosive Materials, 2020, 49(5): 59–64. DOI: 10.3969/j.issn.1001-8352.2020.05.011.
    [7] ZHANG Z F, WANG C, HU H L, et al. Investigation of underwater sympathetic detonation [J]. Propellants, Explosives, Pyrotechnics, 2020, 45(11): 1736–1744. DOI: 10.1002/prep.202000099.
    [8] YANG J X, SHI C, YANG W K, et al. Numerical simulation of column charge explosive in rock masses with particle flow code [J]. Granular Matter, 2019, 21(4): 96. DOI: 10.1007/s10035-019-0950-2.
    [9] 姜颖资, 王伟力, 黄雪峰, 等. 带壳炸药在高速运动炸药作用下殉爆效应研究 [J]. 工程爆破, 2014, 20(3): 1–4. DOI: 10.3969/j.issn.1006-7051.2014.03.001.

    JIANG Y Z, WANG W L, HUANG X F, et al. Research on the sympathetic detonation effect of shelled explosive by highspeed movement explosive [J]. Engineering Blasting, 2014, 20(3): 1–4. DOI: 10.3969/j.issn.1006-7051.2014.03.001.
    [10] SHIN H, LEE W. Material design guidelines for explosive confinements to control impact shock-induced detonations based on shock transmission/reflection analysis [J]. International Journal of Impact Engineering, 2003, 28(5): 465–478. DOI: 10.1016/S0734-743X(2)00075-1.
    [11] STARKENBERG J, HUANG Y, ARBUCKLE A. Numerical modeling of projectile impact shock initiation of bare and covered composition-B [J]. Journal of Energetic Materials, 1984, 2(1/2): 1–41. DOI: 10.1080/07370658408012327.
    [12] 李凯, 詹勇, 程波, 等. 爆炸冲击波经隔板衰减后的起爆能力数值研究 [C]//2014’(第六届)含能材料与钝感弹药技术学术研讨会论文集. 北京: 中国兵工学会爆炸与安全技术专业委员会, 2014: 474–478.
    [13] 李顺波, 东兆星, 齐燕军, 等. 爆炸冲击波在不同介质中传播衰减规律的数值模拟 [J]. 振动与冲击, 2009, 28(7): 115–117. DOI: 10.13465/j.cnki.jvs.2009.07.001.

    LI S B, DONG Z X, QI Y J, et al. Numerical simulation for spread decay of blasting shock wave in different media [J]. Journal of Vibration and Shock, 2009, 28(7): 115–117. DOI: 10.13465/j.cnki.jvs.2009.07.001.
    [14] 赵根, 季荣, 郑晓宁, 等. 乳化炸药水中爆炸冲击波传播规律试验研究 [J]. 爆破, 2011, 28(2): 1–4. DOI: 10.3963/j.issn.1001-487X.2011.02.001.

    ZHAO G, JI R, ZHENG X N, et al. Experimental investigation on propagation rule of shock wave by emulsion explosives underwater blasting [J]. Blasting, 2011, 28(2): 1–4. DOI: 10.3963/j.issn.1001-487X.2011.02.001.
    [15] 花宝玲, 李建军, 丁淳彤. 乳化炸药冲击起爆过程的研究 [J]. 工程爆破, 1998, 4(1): 30–33.

    HUA B L, LI J J, DING C T. Study on shock initiation process for emulsion explosives [J]. Engineering Blasting, 1998, 4(1): 30–33.
    [16] 李建军, 汪旭光, 欧育湘, 等. 乳化炸药冲击起爆的实验研究 [J]. 工程爆破, 1995, 1(1): 14–19.

    LI J J, WANG X G, OU Y X, et al. Experimental study on shock initiations of emulsion explosives [J]. Engineering Blasting, 1995, 1(1): 14–19.
    [17] 马晶晶, 龙运杰, 唐虹靖, 等. 炮孔约束下炸药殉爆距离试验研究 [J]. 采矿技术, 2023, 23(6): 165–169. DOI: 10.13828/j.cnki.ckjs.2023.06.037.

    MA J J, LONG Y J, TANG H J, et al. Experimental study on explosive detonation distance under blast hole constraints [J]. Mining Technology, 2023, 23(6): 165–169. DOI: 10.13828/j.cnki.ckjs.2023.06.037.
    [18] 陈庆凯, 夏亚伟, 刘占富, 等. 约束条件对乳化炸药殉爆距离影响的研究 [J]. 矿业研究与开发, 2017, 37(1): 45–49. DOI: 10.13827/j.cnki.kyyk.2017.01.011.

    CHEN Q K, XIA Y W, LIU Z F, et al. The effect of constraint conditions on the gap distance of emulsion explosive [J]. Mining Research and Development, 2017, 37(1): 45–49. DOI: 10.13827/j.cnki.kyyk.2017.01.011.
    [19] 陈朗, 王晨, 鲁建英, 等. 炸药殉爆实验和数值模拟 [J]. 北京理工大学学报, 2009, 29(6): 497–500,524. DOI: 10.15918/j.tbit1001-0645.2009.06.004.

    CHEN L, WANG C, LU J Y, et al. Experiment simulation of sympathetic detonation tests [J]. Transactions of Beijing Institute of Technology, 2009, 29(6): 497–500,524. DOI: 10.15918/j.tbit1001-0645.2009.06.004.
    [20] 张所硕, 聂建新, 张剑, 等. 约束空间内壳装炸药殉爆及防护 [J]. 爆炸与冲击, 2023, 43(8): 085101. DOI: 10.11883/bzycj-2022-0456.

    ZHANG S S, NIE J X, ZHANG J, et al. Sympathetic detonation of explosive charge in confined space and its protection [J]. Explosion and Shock Waves, 2023, 43(8): 106–119. DOI: 10.11883/bzycj-2022-0456.
    [21] 胡宏伟, 王健, 卞云龙, 等. 带壳装药水中殉爆特性分析 [J]. 水下无人系统学报, 2022, 30(3): 308–313. DOI: 10.11993/j.issn.2096-3920.2022.03.005.

    HU H W, WANG J, BIAN Y L, et al. Experiments of sympathetic detonation performance of explosives with shell in water [J]. Journal of Unmanned Undersea Systems, 2022, 30(3): 308–313. DOI: 10.11993/j.issn.2096-3920.2022.03.005.
    [22] 刘晓文, 高玉刚. 炸药在水介质中殉爆特性分析 [J]. 工程爆破, 2022, 28(4): 102–107. DOI: 10.19931/j.EB.20210241.

    LIU X W, GAO Y G. Analysis of explosive martyrdom in water medium [J]. Engineering Blasting, 2022, 28(4): 102–107. DOI: 10.19931/j.EB.20210241.
    [23] KO Y H, KIM S J, YANG H S. Assessment for the sympathetic detonation characteristics of underwater shaped charge [J]. Geosystem Engineering, 2017, 20(5): 286–293. DOI: 10.1080/12269328.2017.1323679.
    [24] 张忠伟, 任舸, 李洪涛. 锦屏二级水电站导流隧洞进口围堰拆除爆破 [J]. 爆破, 2011, 28(4): 77–80. DOI: 10.3963/j.issn.1001-487X.2011.04.021.

    ZHANG Z W, REN G, LI H T. Explosive demolition of intake cofferdam of diversion tunnel on Jingping Ⅱ Hydropower Station [J]. Blasting, 2011, 28(4): 77–80. DOI: 10.3963/j.issn.1001-487X.2011.04.021.
    [25] 中华人民共和国国家质量监督检验检疫总局. 爆破安全规程: GB 6722–2014 [S]. 北京: 冶金工业出版社, 2014.
    [26] 李文焱. 元宝山露天矿富水裂隙台阶爆破的殉爆机理及防止殉爆技术研究 [D]. 辽宁工程技术大学, 2023. DOI: 10.27210/d.cnki.glnju.2023.000910.
    [27] 凌天龙, 王宇涛, 刘殿书 等. 修正RHT模型在岩体爆破响应数值模拟中的应用 [J]. 煤炭学报, 2018, 43(S2): 434–442. DOI: 10.13225/j.cnki.jccs.2017.1698.

    LING T L, WANG Y T, LIU D S, et al. Modified RHT model for numerical simulation of dynamic response of rock mass under blasting load [J]. Journal of China Coal Society, 2018, 43(S2): 434–442. DOI: 10.13225/j.cnki.jccs.2017.1698.
    [28] SHINY S, LEE M, LAM K Y, et al. Modeling mitigation effects of watershield on shock waves [J]. Shock and Vibration, 1998, 5(4): 225–234. DOI: 10.1155/1998/782032.
  • 加载中
图(27) / 表(5)
计量
  • 文章访问数:  124
  • HTML全文浏览量:  38
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-11
  • 修回日期:  2024-07-09
  • 网络出版日期:  2024-07-10

目录

    /

    返回文章
    返回