围压作用下等离子体的爆破破岩效应

王雁冰 李雪 王兆阳 黄晢航 梅洪嘉 李阳阳 罗林

王雁冰, 李雪, 王兆阳, 黄晢航, 梅洪嘉, 李阳阳, 罗林. 围压作用下等离子体的爆破破岩效应[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0089
引用本文: 王雁冰, 李雪, 王兆阳, 黄晢航, 梅洪嘉, 李阳阳, 罗林. 围压作用下等离子体的爆破破岩效应[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0089
WANG Yanbing, LI Xue, WANG Zhaoyang, HUANG Zhehang, MEI Hongjia, LI Yangyang, LUO Lin. Rock breaking effect of plasma blasting under confining pressure[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0089
Citation: WANG Yanbing, LI Xue, WANG Zhaoyang, HUANG Zhehang, MEI Hongjia, LI Yangyang, LUO Lin. Rock breaking effect of plasma blasting under confining pressure[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0089

围压作用下等离子体的爆破破岩效应

doi: 10.11883/bzycj-2024-0089
基金项目: 国家重点研发计划(2021YFC2902103);国家自然科学基金(51934001);中央高校基本科研业务费专项资金(2023JCCXLJ02);
详细信息
    作者简介:

    王雁冰(1987- ),男,博士,副教授,ceowyb818@163.com

  • 中图分类号: O383

Rock breaking effect of plasma blasting under confining pressure

  • 摘要: 为向深部应力作用下爆破破岩工程提供新型破岩方法,开展了4组不同围压作用下的等离子体砂岩爆破实验,通过CT扫描和三维重构,对比分析岩石内部三维裂纹的形态结构和分布状况,研究等离子体爆破破岩技术在不同围压作用下破岩效果,并通过LS-DYNA进行数值模拟,建立了等离子体等效炸药模型,补充验证耦合应力场中等离子体爆破的作用规律,探究不同围压作用下等离子体爆破破岩机理以及岩体在爆破过程中内部裂纹扩展、分布及损伤演化规律。结果表明:相同电压作用下,随着三向围压的升高,岩石表面裂纹的数量和分布范围都呈逐渐减小的趋势,砂岩内部裂纹的复杂程度和贯通程度显著降低。由于在等离子体爆破产生的动态应力场和围压作用产生静态应力耦合场中,等离子体爆破产生的冲击波在爆炸初始阶段发挥主要作用效果,不同围压作用下岩石的裂纹形态和中心膨胀区域未出现明显差异,随着冲击波的衰减,三向围压在等离子体爆破过程的中后期发挥决定作用,抑制岩体的裂纹扩展和损伤演化。同时,随着围压升高,其对岩体内部裂纹扩展的抑制效果越显著,导致岩石内部三维裂纹的体分形维数和损伤度与围压作用均近似呈线性减小关系。
  • 图  1  等离子体爆破破岩技术示意图

    Figure  1.  Schematic diagram of plasma blasting rock breaking technology

    图  2  围压作用下等离子体爆破破岩实验装置图

    Figure  2.  Device diagram of plasma blasting rock breaking test under confining pressure

    图  3  试件

    Figure  3.  Specimen

    图  4  等离子体爆破破岩实验流程

    Figure  4.  Process of plasma blasting rock breaking test

    图  5  不同围压下砂岩试件上表面破裂结果

    Figure  5.  Surface fracture results of sandstone specimens under different confining pressures

    图  6  X射线工业CT检测系统

    Figure  6.  X-ray industrial CT testing system

    图  7  爆后试件CT扫描原始图像

    Figure  7.  Original CT scan image of the specimen after explosion

    图  8  爆后试件提取裂纹后的二值化图像

    Figure  8.  Binary image of post explosion specimen after extracting cracks

    图  9  爆后砂岩试件三维重构

    Figure  9.  3D reconstruction of sandstone specimens after explosion

    图  10  不同视角下内部裂纹分布图

    Figure  10.  Distribution of internal cracks from different perspectives

    图  11  砂岩三维裂纹体的体分形数

    Figure  11.  Volume fractal number of three-dimensional sandstone fracture body

    图  12  不同围压下试件体分形维数与损伤度

    Figure  12.  Fractal dimensions and damage degrees of specimens under different confining pressures

    图  13  数值模拟模型

    Figure  13.  Numerical simulation model

    图  14  不同围压下测点有效应力随时间的变化

    Figure  14.  Effective stress variation curve of measuring points under different confining pressures

    图  15  不同围压作用测点位移变化曲线

    Figure  15.  Displacement variation curves of t points under different confining pressures

    图  16  不同围压作用下试件损伤演化云图

    Figure  16.  Cloud diagram of damage evolution of specimens under different confining pressures

    图  17  中心粉碎区膨胀过程

    Figure  17.  Expansion process of the central crushing area

    表  1  爆后砂岩试件的上表面测量参数

    Table  1.   Upper surface measurement parameters of sandstone specimens after explosion

    砂岩试件施加围压/MPa中心粉碎区面积/mm2裂纹平均宽度/mm最大裂纹长度/mm
    H-101193.993.9053.40
    H-22778.922.3049.40
    H-34514.461.3046.00
    H-46349.490.6043.00
    下载: 导出CSV

    表  2  裂纹特征参数表

    Table  2.   Table of fracture characteristic parameters

    岩石试件加载围压/
    MPa
    裂纹表面积/
    mm2
    裂纹密度/
    mm−1
    裂纹有效
    直径/mm
    H-1028558.440.0294.75
    H-2217146.920.0174.20
    H-3412401.510.0123.74
    H-469503.690.0103.39
    下载: 导出CSV
  • [1] 庞宁波, 杨永康. 地应力下岩石多孔爆破损伤演化数值模拟 [J]. 矿业研究与开发, 2023, 43(10): 119–125. DOI: 10.13827/j.cnki.kyyk.2023.10.018.

    PANG N B, YANG Y K. Numerical simulation on damage evolution of rock porous blasting under in-situ stress [J]. Mining Research and Development, 2023, 43(10): 119–125. DOI: 10.13827/j.cnki.kyyk.2023.10.018.
    [2] 吴立, 张时忠, 林峰. 现代破岩方法综述 [J]. 探矿工程(岩土钻掘工程), 2000(2): 49–51. DOI: 10.3969/j.issn.1672-7428.2000.02.022.

    WU L, ZHANG S Z, LIN F. Synthesizing comment on modern rock fragmentation methods [J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2000(2): 49–51. DOI: 10.3969/j.issn.1672-7428.2000.02.022.
    [3] 孙冰. 液相放电等离子体及其应用 [M]. 北京: 科学出版社, 2013: 7–11.

    SUN B. Discharge plasma in liquid and its applications[M]. Beijing: Science Press, 2013: 7–11.
    [4] 何满潮, 谢和平, 彭苏萍, 等. 深部开采岩体力学研究 [J]. 岩石力学与工程学报, 2005, 24(16): 2803–2813. DOI: 10.3321/j.issn:1000-6915.2005.16.001.

    HE M C, XIE H P, PENG S P, et al. Study on rock mechanics in deep mining engineering [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2803–2813. DOI: 10.3321/j.issn:1000-6915.2005.16.001.
    [5] 陈明, 卢文波, 周创兵, 等. 初始地应力对隧洞开挖爆生裂隙区的影响研究 [J]. 岩土力学, 2009, 30(8): 2254–2258. DOI: 10.16285/j.rsm.2009.08.024.

    CHEN M, LU W B, ZHOU C B, et al. Influence of initial in-situ stress on blasting-induced cracking zone in tunnel excavation [J]. Rock and Soil Mechanics, 2009, 30(8): 2254–2258. DOI: 10.16285/j.rsm.2009.08.024.
    [6] 杨栋, 李海波, 夏祥, 等. 高地应力条件下爆破开挖诱发围岩损伤的特性研究 [J]. 岩土力学, 2014, 35(4): 1110–1116,1122. DOI: 10.16285/j.rsm.2014.04.012.

    YANG D, LI H B, XIA X, et al. Study of blasting-induced dynamic damage of tunnel surrounding rocks under high in-situ stress [J]. Rock and Soil Mechanics, 2014, 35(4): 1110–1116,1122. DOI: 10.16285/j.rsm.2014.04.012.
    [7] 梁瑞, 李生荣, 包娟, 等. 高地应力下岩体的爆破损伤及能量特性 [J]. 高压物理学报, 2022, 36(6): 064202. DOI: 10.11858/gywlxb.20220599.

    LIANG R, LI S R, BAO J, et al. Blasting damage and energy characteristics of rock mass under high in-situ stress [J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 064202. DOI: 10.11858/gywlxb.20220599.
    [8] 马泗洲, 刘科伟, 杨家彩, 等. 初始应力下岩体爆破损伤特性及破裂机理 [J]. 爆炸与冲击, 2023, 43(10): 105201. DOI: 10.11883/bzycj-2023-0151.

    MA S Z, LIU K W, YANG J C, et al. Blast-induced damage characteristics and fracture mechanism of rock mass under initial stress [J]. Explosion and Shock Waves, 2023, 43(10): 105201. DOI: 10.11883/bzycj-2023-0151.
    [9] LI X D, LU K W, YANG J C, et al. Numerical study on blast-induced fragmentation in deep rock mass [J]. International Journal of Impact Engineering, 2022, 170: 104367. DOI: 10.1016/j.ijimpeng.2022.104367.
    [10] TIMOSHKIN I V, MACKERSIE J W, MACGREGOR S J. Plasma channel miniature hole drilling technology [J]. IEEE Transactions on Plasma Science, 2004, 32(5): 2055–2061. DOI: 10.1109/TPS.2004.835489.
    [11] 韩育宏, 陆彬, 李庆, 等. 高压脉冲放电等离子体水处理技术研究进展 [J]. 河北大学学报(自然科学版), 2007, 27(S1): 190–194. DOI: 10.3969/j.issn.1000-1565.2007.z1.050.

    HAN Y H, LU B, LI Q, et al. Research on wastewater treatment by high-voltage plused discharge plasma [J]. Journal of Hebei University (Natural Science Edition), 2007, 27(S1): 190–194. DOI: 10.3969/j.issn.1000-1565.2007.z1.050.
    [12] 尹志强. 水中高压脉冲放电的液电特性及煤体致裂效果研究[D]. 太原理工大学, 2016.

    Yin Zhiqiang. Research on the Electro-Hydraulic Effect and Coal CrackEffect of Underwater High Voltage Discharge[D]. Taiyuan university of technology, 2016.
    [13] TIMOSHKIN I V, MACKERSIE J W, MACGREGOR S J. Plasma channel miniature hole drilling technology [J]. IEEE Transactions on Plasma Science, 2004, 32(5): 2055–2061. DOI: 10.1109/TPS.2004.835489.
    [14] 张辉, 蔡志翔, 陈安明, 等. 液相放电等离子体破岩室内实验与破岩机理 [J]. 石油学报, 2020, 41(5): 615–628. DOI: 10.7623/syxb202005010.

    ZHANG H, CAI Z X, CHEN A M, et al. Experiments and mechanism of rock breaking by the plasma shock wave generated by underwater discharge [J]. Acta Petrolei Sinica, 2020, 41(5): 615–628. DOI: 10.7623/syxb202005010.
    [15] 李铮. 脉冲放电破碎岩石影响规律仿真模拟研究 [D]. 大庆: 东北石油大学, 2022. DOI: 10.26995/d.cnki.gdqsc.2022.000906.

    LI Z. Simulation research on influence law of pulse discharge on rock breaking[D]. Daqing: Northeast Petroleum University, 2022. DOI: 10.26995/d.cnki.gdqsc.2022.000906.
    [16] WANG G, QIN X J, SHEN J N, et al. Quantitative analysis of microscopic structure and gas seepage characteristics of low-rank coal based on CT three-dimensional reconstruction of CT images and fractal theory [J]. Fuel, 2019, 256: 115900. DOI: 10.1016/j.fuel.2019.115900.
    [17] PARK H, LEE S R, KIM T H, et al. Numerical modeling of ground borehole expansion induced by application of pulse discharge technology [J]. Computers and Geotechnics, 2011, 38(4): 532–545. DOI: 10.1016/j.compgeo.2011.03.002.
    [18] 余庆, 张辉, 杨睿智. 基于LS-DYNA的液电效应冲击波数值模拟 [J]. 爆炸与冲击, 2022, 42(2): 024201. DOI: 10.11883/bzycj-2021-0214.

    YU Q, ZHANG H, YANG R Z. Numerical simulation of the shock wave generated by electro-hydraulic effect based on LS-DYNA [J]. Explosion and Shock Waves, 2022, 42(2): 024201. DOI: 10.11883/bzycj-2021-0214.
    [19] 黄佑鹏, 王志亮, 杨辉, 等. 流固耦合法模拟岩石爆破时耦合范围的确定 [J]. 合肥工业大学学报(自然科学版), 2019, 42(12): 1672–1678,1694. DOI: 10.3969/j.issn.1003-5060.2019.12.016.

    HUANG Y P, WANG Z L, YANG H, et al. Determination of coupling range in the simulation of rock blasting using fluid-solid coupling algorithm [J]. Journal of Hefei University of Technology (Natural Science), 2019, 42(12): 1672–1678,1694. DOI: 10.3969/j.issn.1003-5060.2019.12.016.
    [20] 姜鹏飞, 唐德高, 龙源. 不耦合装药爆破对硬岩应力场影响的数值分析 [J]. 岩土力学, 2009, 30(1): 275–279. DOI: 10.16285/j.rsm.2009.01.005.

    JIANG P F, TANG D G, LONG Y. Numerical analysis of influence of uncoupled explosive-charge structure on stress field in hard rocks [J]. Rock and Soil Mechanics, 2009, 30(1): 275–279. DOI: 10.16285/j.rsm.2009.01.005.
    [21] 闫国斌, 于亚伦. 空气与水介质不耦合装药爆破数值模拟 [J]. 工程爆破, 2009, 15(4): 13–19,65. DOI: 10.3969/j.issn.1006-7051.2009.04.004.

    YAN G B, YU Y L. Numerical simulation of air and water medium decoupling charge blasting [J]. Engineering Blasting, 2009, 15(4): 13–19,65. DOI: 10.3969/j.issn.1006-7051.2009.04.004.
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  162
  • HTML全文浏览量:  20
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-01
  • 修回日期:  2024-08-11
  • 网络出版日期:  2024-08-13

目录

    /

    返回文章
    返回