[1] |
ALAMI A H, OLABI A G, ALASHKAR A, et al. Additive manufacturing in the aerospace and automotive industries: recent trends and role in achieving sustainable development goals [J]. Ain Shams Engineering Journal, 2023, 14(11): 102516. DOI: 10.1016/j.asej.2023.102516.
|
[2] |
马如龙, 彭超群, 王日初, 等. 选区激光熔化铝合金的研究进展 [J]. 中国有色金属学报, 2020, 30(12): 2773–2788. DOI: 10.11817/j.ysxb.1004.0609.2020-37780.MA R L, PENG C Q, WANG R C, et al. Progress in selective laser melted aluminum alloy [J]. The Chinese Journal of Nonferrous Metals, 2020, 30(12): 2773–2788. DOI: 10.11817/j.ysxb.1004.0609.2020-37780.
|
[3] |
ABOULKHAIR N T, SIMONELLI M, PARRY L, et al. 3D printing of Aluminium alloys: additive Manufacturing of Aluminium alloys using selective laser melting [J]. Progress in Materials Science, 2019, 106: 100578. DOI: 10.1016/j.pmatsci.2019.100578.
|
[4] |
CASTELLANOS D, CARRETO-VAZQUEZ V H, MASHUGA C V, et al. The effect of particle size polydispersity on the explosibility characteristics of aluminum dust [J]. Powder Technology, 2014, 254: 331–337. DOI: 10.1016/j.powtec.2013.11.028.
|
[5] |
张阳军, 陈英. 金属材料增材制造技术的应用研究进展 [J]. 粉末冶金工业, 2018, 28(1): 63–67. DOI: 10.13228/j.boyuan.issn1006-6543.20170027.ZHANG Y J, CHEN Y. Research on the application of metal additive manufacturing technology [J]. Powder Metallurgy Industry, 2018, 28(1): 63–67. DOI: 10.13228/j.boyuan.issn1006-6543.20170027.
|
[6] |
JIANG H P, BI M S, LI B, et al. Inhibition evaluation of ABC powder in aluminum dust explosion [J]. Journal of Hazardous Materials, 2019, 361: 273–282. DOI: 10.1016/j.jhazmat.2018.07.045.
|
[7] |
LIN S, LIU Z T, QIAN J F, et al. Comparison on the explosivity of coal dust and of its explosion solid residues to assess the severity of re-explosion [J]. Fuel, 2019, 251: 438–446. DOI: 10.1016/j.fuel.2019.04.080.
|
[8] |
陈晓坤, 张自军, 王秋红, 等. 20L近球形容器中微米级铝粉的爆炸特性 [J]. 爆炸与冲击, 2018, 38(5): 1130–1136. DOI: 10.11883/bzycj-2017-0101.CHEN X K, ZHANG Z J, WANG Q H, et al. Explosion characteristics of micro-sized aluminum dust in 20 L spherical vessel [J]. Explosion and Shock Waves, 2018, 38(5): 1130–1136. DOI: 10.11883/bzycj-2017-0101.
|
[9] |
REN X F, ZHANG J S. Correlation between particle size distribution and explosion intensity of aluminum powder [J]. Journal of Loss Prevention in the Process Industries, 2022, 80: 104896. DOI: 10.1016/j.jlp.2022.104896.
|
[10] |
KIM W, SAEKI R, UENO Y, et al. Effect of particle size on the minimum ignition energy of aluminum powders [J]. Powder Technology, 2023, 415: 118190. DOI: 10.1016/j.powtec.2022.118190.
|
[11] |
文虎, 杨玉峰, 王秋红, 等. 矩形管道中微米级铝粉爆炸实验 [J]. 爆炸与冲击, 2018, 38(5): 993–998. DOI: 10.11883/bzycj-2016-0003.WEN H, YANG Y F, WANG Q H, et al. Experimental study on micron-sized aluminum dust explosion in a rectangular pipe [J]. Explosion and Shock Waves, 2018, 38(5): 993–998. DOI: 10.11883/bzycj-2016-0003.
|
[12] |
ZHANG S L, BI M S, YANG M R, et al. Flame propagation characteristics and explosion behaviors of aluminum dust explosions in a horizontal pipeline [J]. Powder Technology, 2020, 359: 172–180. DOI: 10.1016/j.powtec.2019.10.009.
|
[13] |
CHANG P J, MOGI T, DOBASHI R. An investigation on the dust explosion of micron and nano scale aluminium particles [J]. Journal of Loss Prevention in the Process Industries, 2021, 70: 104437. DOI: 10.1016/j.jlp.2021.104437.
|
[14] |
吴建星, 龚友成, 金湘. 环境温度对粉尘爆炸参数的影响 [J]. 工业安全与环保, 2007, 33(11): 32–33. DOI: 10.3969/j.issn.1001-425X.2007.11.014.WU J X, GONG Y C, JIN X. Influences of the environment temperature on dust explosion parameters [J]. Industrial Safety and Environmental Protection, 2007, 33(11): 32–33. DOI: 10.3969/j.issn.1001-425X.2007.11.014.
|
[15] |
FENG Y C, XIA Z X, HUANG L Y, et al. Effect of ambient temperature on the ignition and combustion process of single aluminium particles [J]. Energy, 2018, 162: 618–629. DOI: 10.1016/j.energy.2018.08.066.
|
[16] |
王秋红, 闵锐, 孙艺林, 等. 抛光工艺中镁铝合金粉燃爆参数分析 [J]. 中南大学学报(自然科学版), 2020, 51(5): 1211–1220. DOI: 10.11817/j.issn.1672-7207.2020.05.005.WANG Q H, MIN R, SUN Y L, et al. Analysis of magnesium-aluminum alloy powder burning explosion parameters in the polishing process [J]. Journal of Central South University (Science and Technology), 2020, 51(5): 1211–1220. DOI: 10.11817/j.issn.1672-7207.2020.05.005.
|
[17] |
LUO J W, WANG Q H, CHUNG Y H, et al. Hazard evaluation, explosion risk, and thermal behaviour of magnesium-aluminium alloys during the polishing process by using a 20-L apparatus, MIEA, and TGA [J]. Process Safety and Environmental Protection, 2021, 153: 268–277. DOI: 10.1016/j.psep.2021.07.014.
|
[18] |
马万太, 蒋云泽, 史志翔, 等. 高硅铝合金粉尘云燃爆特性研究 [J]. 工业安全与环保, 2023, 49(3): 76–80. DOI: 10.3969/j.issn.1001-425X.2023.03.018.MA W T, JIANG Y Z, SHI Z X, et al. Study on the dust clouds ignition and explosion characteristics of aluminum alloy with higher silicon contents [J]. Industrial Safety and Environmental Protection, 2023, 49(3): 76–80. DOI: 10.3969/j.issn.1001-425X.2023.03.018.
|
[19] |
VAZ N G, SHANCITA I, PANTOYA M L. Thermal oxidation analysis of aerosol synthesized fuel particles composed of Al versus Al-Si [J]. Powder Technology, 2021, 382: 532–540. DOI: 10.1016/j.powtec.2021.01.018.
|
[20] |
MILLOGO M, BERNARD S, GILLARD P. Combustion characteristics of pure aluminum and aluminum alloys powders [J]. Journal of Loss Prevention in the Process Industries, 2020, 68: 104270. DOI: 10.1016/j.jlp.2020.104270.
|
[21] |
BERNARD S, GILLARD P, FRASCATI F. Ignition and explosibility of aluminium alloys used in additive layer manufacturing [J]. Journal of Loss Prevention in the Process Industries, 2017, 49: 888–895. DOI: 10.1016/j.jlp.2017.04.014.
|
[22] |
孙思衡, 孙艳, 贾存锋, 等. 增材制造用金属粉末爆炸敏感性研究 [J]. 粉末冶金技术, 2020, 38(4): 249–256. DOI: 10.19591/j.cnki.cn11-1974/tf.2020010009.SUN S H, SUN Y, JIA C F, et al. Study on the explosion sensitivity of metal powders used in additive manufacturing [J]. Powder Metallurgy Technology, 2020, 38(4): 249–256. DOI: 10.19591/j.cnki.cn11-1974/tf.2020010009.
|
[23] |
CASTELLANOS D, BAGARIA P, MASHUGA V C. Effect of particle size polydispersity on dust cloud minimum ignition energy [J]. Powder Technology, 2020, 367: 782–787. DOI: 10.1016/j.powtec.2020.04.037.
|
[24] |
ASTM International. ASTM E1515-14 Standard test method for minimum explosible concentration of combustible dusts[S]. West Conshohocken: ASTM International, 2014: 1–6. DOI: 10.1520/E1515-14.
|
[25] |
赵江平, 王振成. 热爆炸理论在粉尘爆炸机理研究中的应用 [J]. 中国安全科学学报, 2004, 14(5): 80–83. DOI: 10.16265/j.cnki.issn1003-3033.2004.05.020.ZHAO J P, WANG Z C. Application of heat explosion theory to dust explosion mechanism research [J]. China Safety Science Journal, 2004, 14(5): 80–83. DOI: 10.16265/j.cnki.issn1003-3033.2004.05.020.
|
[26] |
KUAI N S, HUANG W X, DU B, et al. Experiment-based investigations on the effect of ignition energy on dust explosion behaviors [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(4): 869–877. DOI: 10.1016/j.jlp.2013.03.005.
|
[27] |
KIM T S, LEE B T, LEE C R, et al. Microstructure of rapidly solidified Al–20Si alloy powders [J]. Materials Science and Engineering: A, 2001, 304/305/306: 617–620. DOI: 10.1016/S0921-5093(00)01546-X.
|
[28] |
ZHOU Z Q, CHAI L J, ZHANG Y L, et al. Experimental study on oxidation and shell-breaking characteristics of individual aluminum particles at high temperature [J]. Powder Technology, 2024, 431: 119087. DOI: 10.1016/j.powtec.2023.119087.
|
[29] |
DEAL B E, GROVE A S. General relationship for the thermal oxidation of silicon [J]. Journal of Applied Physics, 1965, 36(12): 3770–3778. DOI: 10.1063/1.1713945.
|
[30] |
曹卫国. 褐煤粉尘爆炸特性实验及机理研究 [D]. 南京: 南京理工大学, 2016. DOI: 10.7666/d.Y3192770.CAO W G. Experimental and mechanism study on explosion characteristic of lignite coal dust [D]. Nanjing: Nanjing University of Science and Technology, 2016. DOI: 10.7666/d.Y3192770.
|
[31] |
BALLANTYNE A, MOSS J B. Fine wire thermocouple measurements of fluctuating temperature [J]. Combustion Science and Technology, 1977, 17(1/2): 63–72. DOI: 10.1080/00102209708946813.
|
[32] |
MA X S, MENG X B, LI Z Y, et al. Study of the influence of melamine polyphosphate and aluminum hydroxide on the flame propagation and explosion overpressure of aluminum magnesium alloy dust [J]. Journal of Loss Prevention in the Process Industries, 2020, 68: 104291. DOI: 10.1016/j.jlp.2020.104291.
|
[33] |
ZHANG T J, ZHANG Z L, ZHU C C, et al. Inhibition effects of aluminum dust explosions by various kinds of ammonium polyphosphate [J]. Journal of Loss Prevention in the Process Industries, 2023, 83: 105083. DOI: 10.1016/j.jlp.2023.105083.
|