Influence of structural parameters on formation characteristics of 125 kg FAE clouds
-
摘要: 云雾的起爆状态决定爆轰威力,装置结构和比药量是影响云雾形态的主要因素。基于装置结构与云雾形状相似性的原理,对125 kg云雾的成雾性能进行试验研究,利用高速摄像进行全过程记录,获取了不同轴向强度装置结构和比药量对云雾特征的影响规律。结果表明:大体积燃料抛撒试验的成雾稳定性较好;轴向约束强的复合结构形成的云雾直径具有优势,相同比药量下,复合结构的云雾直径可以达到25.5 m,较强结构的云雾覆盖面积增加13%;比药量为0.8%时,复合结构燃料的成雾性能最佳,125 kg燃料的2次起爆延迟时间为240 ms,此时,云雾瞬时计算浓度为64 g/m3,当量比为0.54。Abstract: The large-scale explosive dispersal and the unconfined detonation of particle-spray-air ternary mixtures are closely related to industrial accidents and military applications. However, most of the existing research focuses on the small-scale experiment in the laboratory. The large-scale explosive dispersal experiment is rare. According to most of the research findings, the explosive power was determined by the detonation state of aerosol. The charge and specific central explosive were the main factors affecting the shape of the aerosol. To study the damaging effect of aerosol, the large-scale dispersed experiment of 125 kg fuel was carried out. The process of aerosol development was observed by high-speed video recording. Variation characteristics of FAE cloud with different canisters and the specific central explosive were studied. The aerosol diameter and height were used to describing the aerosol shape, then they were analyzed under different initial experiment conditions. There were three types of designing canisters, including basic canister, compound canister and strengthen canister. And the main difference between those types of canisters was the radial restraint. The specific quantities of buster charge was adopted the T-shaped charge. The results show that the aerosol formation is reliable through the replication experiments. Because of its strong radial restraint, the compound canister has the advantage in the aerosol diameters. The aerosol diameters of compound canister can reach 25.5 m, compared to strong canister coverage area increased by 13%. Therefore, the compound canister with the specific quantities of buster charge of 0.8% has the best aerosol performance for 125 kg fuel. On this basis, characteristics of the aerosol were further analyzed. Thus the optimal secondary detonation delay time is 240 ms. The aerosol calculating concentration before burst is 64 g/m3 and the chemical equivalent ratio of fuel to oxygen in the air is 0.54.
-
Key words:
- FAE cloud formation /
- explosion dispersed /
- structural /
- quantities of buster charge
-
表 1 2种装置结构的比药量参数
Table 1. Parameters of canister and specific central explosive
序号 装置结构 中心药量/kg 燃料量/kg 比药量 1 复合结构 1.004 125 0.8% 2 复合结构 1.156 125 0.9% 3 复合结构 1.232 125 1.0% 4 强结构 1.156 125 0.9% 5 强结构 1.232 125 1.0% 6 强结构 1.375 125 1.1% 表 2 不同装置结构的试验结果
Table 2. Result of three models
序号 装置结构 比药量 试验结果 1 弱结构 0.9% 窜火 2 强结构 0.9% 正常 3 复合结构 0.9% 正常 -
[1] BAI C H, WANG Y, XUE K, et al. Experimental study of detonation of large-scale powder-droplet-vapor mixtures [J]. Shock Waves, 2018, 28(3): 599–611. DOI: 10.1007/s00193-017-0795-8. [2] LIU W J, BAI C H, LIU Q M, et al. Effect of low-concentration RDX dust on solid-liquid mixed fuel characteristics [J]. Combustion and Flame, 2021, 225: 31–38. DOI: 10.1016/j.combustflame.2020.10.037. [3] CAO Y, LI B, XIE L F, et al. Experimental and numerical study on pressure dynamic and venting characteristic of methane-air explosion in the tube with effect of methane concentration and vent burst pressure [J]. Fuel, 2022, 316: 123311. DOI: 10.1016/j.fuel.2022.123311. [4] MERCX W P M, VAN DEN BERG A C. The explosion blast prediction model in the revised CPR 14E (Yellow Book) [J]. Process Safety Progress, 1997, 16(3): 152–159. DOI: 10.1002/prs.680160308. [5] MERCX W P M, JOHNSON D M, PUTTOCK J. Validation of scaling techniques for experimental vapor cloud explosion investigations [J]. Process Safety Progress, 1995, 14(2): 120–130. DOI: 10.1002/prs.680140206. [6] LEYER J C. An experimental study of pressure fields by exploding cylindrical clouds [J]. Combustion and Flame, 1982, 48: 251–263. DOI: 10.1016/0010-2180(82)90132-8. [7] 张奇, 覃彬, 白春华, 等. 中心装药对FAE燃料成雾特性影响的试验分析 [J]. 含能材料, 2007, 15(5): 447–450. DOI: 10.3969/ j.issn.1006-9941.2007.05.002. DOI: 10.3969/j.issn.1006-9941.2007.05.002.ZHANG Q, QIN B, BAI C H, et al. Effect of total energy of center explosive charge on fuel dispersal characteristic feature [J]. Chinese Journal of Energetic Materials, 2007, 15(5): 447–450. DOI: 10.3969/j.issn.1006-9941.2007.05.002. [8] 樊保龙, 白春华, 王博, 等. 大尺寸密闭容器内天然气的爆炸超压场 [J]. 爆炸与冲击, 2018, 38(2): 404–408. DOI: 10.11883/bzycj-2016-0191.FAN B L, BAI C H, WANG B, et al. Explosion overpressure field of natural gas in a large-scaled confined vessel [J]. Explosion and Shock Waves, 2018, 38(2): 404–408. DOI: 10.11883/bzycj-2016-0191. [9] APPARAO A, RAO C R, TEWARI S P. Studies on formation of unconfined detonable vapor cloud using explosive means [J]. Journal of Hazardous Materials, 2013, 254-255: 214–220. DOI: 10.1016/j.jhazmat.2013.02.056. [10] 郭学永, 惠君明. 装置参数对FAE云雾状态的影响 [J]. 含能材料, 2002, 10(4): 161–164. DOI: 10.3969/j.issn.1006-9941.2002.04.005.GUO X Y, HUI J M. Influence of equipment parameters on FAE cloud status [J]. Chinese Journal of Energetic Materials, 2002, 10(4): 161–164. DOI: 10.3969/j.issn.1006-9941.2002.04.005. [11] 刘庆明, 白春华, 李建平. 多相燃料空气炸药爆炸压力场研究 [J]. 实验力学, 2008, 23(4): 360–370.LIU Q M, BAI C H, LI J P. Study on blast field characteristics of multiphase fuel air explosive [J]. Journal of Experimental Mechanics, 2008, 23(4): 360–370. [12] 陈明生, 白春华, 李建平. 燃料抛撒的初始速率与结构动态响应数值模拟 [J]. 含能材料, 2015, 23(4): 323–329. DOI: 10.11943/j.issn.1006-9941.2015.04.003.CHEN M S, BAI C H, LI J P. Simulation on initial velocity and structure dynamic response for fuel dispersion [J]. Chinese Journal of Energetic Materials, 2015, 23(4): 323–329. DOI: 10.11943/j.issn.1006-9941.2015.04.003. [13] 陈明生. 大体积燃料空气混合物爆轰基础问题研究 [D]. 北京: 北京理工大学, 2015: 43–75.CHEN M S. Research on basic characteristics of large volume fuel air mixtures detonation [D]. Beijing: Beijing Institute of Technology, 2015: 43–75. [14] 王永旭, 解立峰, 贾晓亮, 等. 300 kg装药FAE燃料爆炸抛撒成雾的实验研究 [J]. 爆破器材, 2020, 49(2): 23–28. DOI: 10.3969/j.issn.1001-8352.2020.02.004.WANG Y X, XIE L F, JIA X L, et al. Experimental study on 300 kg charge of FAE clouds by explosion dispersal [J]. Explosive Materials, 2020, 49(2): 23–28. DOI: 10.3969/j.issn.1001-8352.2020.02.004. [15] 白春华, 梁慧敏, 李建平, 等. 云雾爆轰 [M]. 北京: 科学出版社, 2012: 137-155. [16] RIPLEY R, DONAHUE L, ZHANG F. Jetting instabilities of particles from explosive dispersal [J]. AIP Conference Proceedings, 2012, 1426(1): 1615–1618. DOI: 10.1063/1.3686594. [17] 宋述忠, 彭金华, 陈网桦, 等. 几种燃料云雾爆轰临界起爆能的研究 [J]. 爆炸与冲击, 2002, 22(4): 373–376. DOI: 10.3321/j.issn:1001-1455.2002.04.016.SONG S Z, PENG J H, CHEN W H, et al. Study on critical initiation energy of several fuel-air mixture [J]. Explosion and Shock Waves, 2002, 22(4): 373–376. DOI: 10.3321/j.issn:1001-1455.2002.04.016.