Detonation performance and specific impulse characteristics of a PETN-based ultra-thin sheet explosive
-
摘要: 薄片炸药加载技术是实验室考核X射线辐照下空间结构动态响应的重要手段。为实现新型空间飞行器结构考核所需的超低比冲量化爆加载载荷,研制了以PETN为主炸药、高聚物橡胶为黏结剂的超薄片炸药。薄片炸药中PETN的质量分数为90%~92%,厚度范围为0.15~0.50 mm,密度范围为1.63~1.68 g/cm3,爆速范围为7.44~7.71 km/s。基于炸痕法的爆轰性能实验结果表明:厚度为0.15~0.50 mm的薄片炸药可由装药线密度为0.2 g/m的柔爆索可靠引爆,厚度为0.20~0.50 mm的炸药条均能可靠传爆。利用冲击摆测量装置对不同直径、不同厚度薄片炸药的比冲量特性进行了测试,结合理论分析,给出薄片炸药的比冲量与厚度成正比,比例系数为3 418.56 Pa·s/mm,成功实现了厚度为0.20 mm、比冲量约为680 Pa·s超薄片炸药的研制。Abstract: The sheet explosive loading technology is a crucial method for evaluating the dynamic response of the space structure under the X-ray radiation in laboratory. To achieve the ultra-low specific impulse explosive loading required for the structural assessment of new space vehicles, a sheet explosive has been developed, primarily composed of PETN as the main explosive and polymer rubber as the binder. The mass fraction of PETN is 90%–92%, the thickness range is 0.15–0.20 mm, the density range is 1.63–1.68 g/cm3, and the explosive velocity range is 7.44–7.71 km/s. To verify the high-impact initiation sensitivity of the sheet explosive, three rounds of verification experiments were designed based on the blast marketing method. In the experiment, the sheet explosive was directly applied to the effect plate or a certain air gap reserved between the sheet explosive and the effect plate. The detonation of the explosive is confirmed by examining the explosive marks left on the effect plate post-explosion. The experimental results show that: the sheet explosive with a thickness of 0.15–0.50 mm can be reliably detonated by a mild detonating fuse with a charge line density of 0.2 g/m, and the explosive strips with a thickness of 0.20–0.50 mm can reliably transmit detonation. The specific impulse characteristic of the sheet explosive with different diameters and thicknesses was measured and studied by the impact pendulum measurement device. Combined with theoretical analysis, The specific impulse calculation model of sheet explosive was used to perform polynomial fitting on the specific impulse direct measurement data of sheet explosives with thicknesses of 0.20, 0.30, 0.40 and 0.50 mm, respectively. The specific impulse values of sheet explosives with four thicknesses were linearly fitted. The results show that the specific impulse of the sheet explosive is proportional to the thickness and the ratio coefficient is 3 418.56 Pa·s/mm. The development of ultra-thin sheet explosive with a thickness of 0.2 mm and a specific impulse of about 680 Pa·s has been successfully realized.
-
Key words:
- ultra-thin sheet explosive /
- PETN /
- mild detonating fuse /
- detonation performance /
- specific impulse
-
表 1 超薄片炸药密度测量数据
Table 1. Measurement data of sheet explosive density
PETN质量
分数/%炸药厚度/
mm超薄片炸药密度/(g·cm−3) 测量值1 测量值2 测量值3 平均值 90 0.20 1.67 1.65 1.66 1.66 0.30 1.65 1.64 1.64 1.64 0.40 1.63 1.64 1.63 1.63 92 0.20 1.68 1.69 1.67 1.68 0.30 1.66 1.66 1.65 1.66 0.40 1.64 1.64 1.63 1.64 表 2 超薄片炸药爆速测量数据
Table 2. Measurement data of detonation velocity of sheet explosive
PETN质量
分数/%炸药厚度/
mm爆速/(km·s−1) 测量值1 测量值2 测量值3 平均值 90 0.20 7.63 7.61 7.65 7.63 0.30 7.55 7.53 7.54 7.54 0.40 7.41 7.43 7.47 7.44 92 0.20 7.69 7.68 7.75 7.71 0.30 7.65 7.63 7.68 7.65 0.40 7.53 7.52 7.54 7.53 表 3 薄片炸药比冲量直接测量数据
Table 3. Measurement data of the direct specific impulse of sheet explosive
实验 炸药厚度/mm 炸药直径/mm 比冲量/(Pa·s) 比冲量平均值/(Pa·s) 1 0.20 8 923.4 917.4 2 0.20 8 911.3 3 0.20 10 762.0 762.0 4 0.20 10 762.0 5 0.20 15 642.2 639.6 6 0.20 15 637.0 7 0.30 8 1 279.9 1 285.9 8 0.30 8 1 291.8 9 0.30 10 1 138.6 1 134.3 10 0.30 10 1 129.9 11 0.30 15 1 024.6 1 008.7 12 0.30 15 992.8 13 0.36 10 1 434.2 1 434.2 14 0.36 15 1 280.3 1 280.3 15 0.40 8 1 639.3 1 652.3 16 0.40 8 1 665.2 17 0.40 10 1 527.9 1 527.9 18 0.40 10 1 527.9 19 0.40 15 1 425.5 1 419.3 20 0.40 15 1 413.1 21 0.50 8 2 027.7 2 027.7 22 0.50 8 2 027.7 23 0.50 10 1 937.5 1 910.5 24 0.50 10 1 883.4 25 0.50 15 1 788.9 1 792.0 26 0.50 15 1 795.0 表 4 比冲量测试数据与数值模拟结果的对比
Table 4. Comparison between the test data and numerical simulation results of specific impulse
炸药厚度/
mm比冲量/(Pa·s) 相对偏差/
%测试值 模拟值 0.20 685.1 700.2 2.2 0.30 1 019.4 1 059.6 3.8 0.50 1 684.5 1 770.4 4.9 -
[1] 周南, 乔登江. 脉冲束辐照材料动力学 [M]. 北京: 国防工业出版社, 2002: 9–12.ZHOU N, QIAO D J. Materials dynamics under pulse beam radiation [M]. Beijing: National Defense Industry Press, 2002: 9–12. [2] LONGLEY R W. Analytical relationships for estimating the effects of X-rays on materials: AFRPL-TR-74-52 [R]. USA: AFRPL, 1974. [3] 毛勇建, 邓宏见, 何荣建. 强脉冲软X光喷射冲量的几种模拟加载技术 [J]. 强度与环境, 2003, 30(2): 55–64. DOI: 10.3969/j.issn.1006-3919.2003.02.008.MAO Y J, DENG H J, HE R J. Several simulation techniques of blow-off impulses by intense pulsed cold X-rays [J]. Structure & Environment Engineering, 2003, 30(2): 55–64. DOI: 10.3969/j.issn.1006-3919.2003.02.008. [4] LINDBERG H E, MURRAY Y. Calibration and analysis of the SPLAT (spray lead at target) impulse simulation technique: DNA-TR-81-333 [R]. USA: APTEK. Inc., 1983. [5] LINDBERG H E. Deformation ripple from the SPLAT impulse simulation technique: AD-A190-861 [R]. USA: APTEK. Inc., 1988. [6] 赵国民, 张若棋, 彭常贤, 等. 铅壳柔爆索冲量作用下圆柱壳体结构响应实验研究 [J]. 爆炸与冲击, 2002, 22(2): 126–131. DOI: 10.11883/1001-1455(2002)02-0126-6.ZHAO G M, ZHANG R Q, PENG C X, et al. Experimental studies of the structural response of cylindrical shells under mild detonating fuse impulse [J]. Explosion and Shock Waves, 2002, 22(2): 126–131. DOI: 10.11883/1001-1455(2002)02-0126-6. [7] FORRESTAL M J, ALZHEIMER W E. Response of a circular elastic shell to moving and simultaneous loads [J]. AIAA Journal, 1970, 8(5): 970–971. DOI: 10.2514/3.5810. [8] LINDBERG H E, COLTON J D. Sheet explosive simulation for combined shock and structural response: AFWL-TR-69-124 [R]. USA: AFWL, 1970. [9] FRANKLIN B W. Development of a high-energy flexible sheet explosive: AD-786510 [R]. USA: Picatinny Arsenal, 1974. [10] 毛勇建, 李玉龙, 陈颖, 等. 炸药条加载圆柱壳的数值模拟(Ⅰ): 流固耦合模拟 [J]. 高压物理学报, 2012, 26(2): 155–162. DOI: 10.11858/gywlxb.2012.02.006.MAO Y J, LI Y L, CHEN Y, et al. Numerical simulation of cylindrical shell loaded by explosive rods (Ⅰ): fluid-structure interaction simulation [J]. Chinese Journal of High Pressure Physics, 2012, 26(2): 155–162. DOI: 10.11858/gywlxb.2012.02.006. [11] 毛勇建, 李玉龙, 陈颖, 等. 炸药条加载圆柱壳的数值模拟(Ⅱ): 解耦分析与实验验证 [J]. 高压物理学报, 2013, 27(1): 76–82. DOI: 10.11858/gywlxb.2013.01.011.MAO Y J, LI Y L, CHEN Y, et al. Numerical simulation of cylindrical shell loaded by explosive rods (Ⅱ): decoupling analysis and experimental validation [J]. Chinese Journal of High Pressure Physics, 2013, 27(1): 76–82. DOI: 10.11858/gywlxb.2013.01.011. [12] 毛勇建, 李玉龙, 陈颖, 等. 炸药条加载圆柱壳的数值模拟(Ⅲ): 对X射线力学效应的模拟等效性分析 [J]. 高压物理学报, 2013, 27(5): 711–718. DOI: 10.11858/gywlxb.2013.05.009.MAO Y J, LI Y L, CHEN Y, et al. Numerical simulation of loading cylindrical shell by explosive rods (Ⅲ): fidelity for simulating X-ray mechanical effects [J]. Chinese Journal of High Pressure Physics, 2013, 27(5): 711–718. DOI: 10.11858/gywlxb.2013.05.009. [13] 丁洋, 卢强, 李进, 等. 用十字形超细药条离散群同步起爆实现超低比冲量加载 [J]. 爆炸与冲击, 2023, 43(5): 054101. DOI: 10.11883/bzycj-2022-0314.DING Y, LU Q, LI J, et al. Realization of ultra-low specific impulse loading by synchronous initiation of discrete group of cross ultra-fine explosive rods [J]. Explosion and Shock Waves, 2023, 43(5): 054101. DOI: 10.11883/bzycj-2022-0314. [14] BENHAM R A. Preliminary experiments using light-initiated high explosive for driving thin flyer plates: SAND79-1847/XAB [R]. USA: Sandia National Laboratories, 1979. [15] RIVERA W G, BENHAM R A, DUGGINS B D, et al. Explosive technique for impulse loading of space structures: SAND99-3175C [R]. USA: Sandia National Laboratories, 1999. [16] 徐海斌, 杨军, 仵可, 等. 光辐射起爆乙炔银-硝酸银光敏炸药同步性能 [J]. 兵工学报, 2022, 43(11): 2791–2797. DOI: 10.12382/bgxb.2021.0611.XU H B, YANG J, WU K, et al. Simultaneous initiation of light-initiated explosive silver acetylide-silver nitrate [J]. Acta Armamentarii, 2022, 43(11): 2791–2797. DOI: 10.12382/bgxb.2021.0611. [17] 随亚光, 陈博, 徐海斌, 等. 光敏炸药加载实验中的电磁干扰防护技术 [J]. 现代应用物理, 2019, 10(2): 021203. DOI: 10.12061/j.issn.2095-6223.2019.021203.SUI Y G, CHEN B, XU H B, et al. Electromagnetic interference protection technology in loading experiment of light-initiated explosive [J]. Modern Applied Physics, 2019, 10(2): 021203. DOI: 10.12061/j.issn.2095-6223.2019.021203. [18] 刘瑶, 王建华, 刘玉存, 等. 薄片橡胶炸药的制备及性能研究 [J]. 爆破器材, 2014(2): 24–28. DOI: 10.3969/j.issn.1001-8352.2014.02.006.LIU Y, WANG J H, LIU Y C, et al. Preparation and performance study of thin rubber explosive [J]. Explosive Materials, 2014(2): 24–28. DOI: 10.3969/j.issn.1001-8352.2014.02.006. [19] 黄亨建, 张明, 韩超, 等. 一种低比冲量片状挠性炸药 [C]//中国工程物理研究院科技年报. 北京: 原子能出版社, 2003: 363. [20] 林鹏, 王长利, 王等旺. 挠性炸药比冲量的数值模拟与实验研究 [J]. 火炸药学报, 2011, 34(4): 30–33, 48. DOI: 10.14077/j.issn.1007-7812.2011.04.002.LIN P, WANG C L, WANG D W. Numerical simulation and experimental studies on impulse of flexible explosive [J]. Chinese Journal of Explosives & Propellants, 2011, 34(4): 30–33, 48. DOI: 10.14077/j.issn.1007-7812.2011.04.002. [21] 岳晓红, 毛勇建, 何荣建, 等. 片状炸药的比冲量标定技术 [C]//2002全国火炸药技术及钝感弹药学术研讨会论文集. 绵阳: 中国工程物理研究院化工材料研究所, 2002: 396–398. [22] 卢强, 王占江, 刘晓新, 等. 薄片炸药与固体靶冲量耦合的计算模型 [J]. 爆炸与冲击, 2017, 37(1): 84–91. DOI: 10.11883/1001-1455(2017)01-0084-08.LU Q, WANG Z J, LIU X X, et al. A computational model for impulse coupling between sheet explosive and target [J]. Explosion and Shock Waves, 2017, 37(1): 84–91. DOI: 10.11883/1001-1455(2017)01-0084-08. [23] 张宝平, 张庆明, 黄风雷. 爆轰物理学 [M]. 北京: 兵器工业出版社, 2009: 185–187. [24] 门朝举, 王占江, 郭志昀, 等. 基于冲击摆的片炸药比冲量测量技术 [C]//第七届全国爆炸力学实验技术学会会议论文集. 宁波: 中国力学学会爆炸力学专业委员会, 2012: 4.