退火态增材制造AlSi10Mg合金在极端条件下的力学行为

张权 陈剑斌 史同亚 汪小锋 南小龙 王永刚

张权, 陈剑斌, 史同亚, 汪小锋, 南小龙, 王永刚. 退火态增材制造AlSi10Mg合金在极端条件下的力学行为[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0138
引用本文: 张权, 陈剑斌, 史同亚, 汪小锋, 南小龙, 王永刚. 退火态增材制造AlSi10Mg合金在极端条件下的力学行为[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0138
ZHANG Quan, CHEN Jianbin, SHI Tongya, WANG Xiaofeng, NAN Xiaolong, WANG Yonggang. Mechanical behavior of additively manufactured AlSi10Mg alloy with annealing state under extreme conditions[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0138
Citation: ZHANG Quan, CHEN Jianbin, SHI Tongya, WANG Xiaofeng, NAN Xiaolong, WANG Yonggang. Mechanical behavior of additively manufactured AlSi10Mg alloy with annealing state under extreme conditions[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0138

退火态增材制造AlSi10Mg合金在极端条件下的力学行为

doi: 10.11883/bzycj-2024-0138
基金项目: 冲击波物理与爆轰物理全国重点实验室稳定支持项目(JCKYS2023212005);宁波市科技创新2025重大专项(2021Z099,2023Z005,2023Z012);新金属材料国家重点实验室开放基金(2023-Z04)
详细信息
    作者简介:

    张 权(1999- ),男,硕士研究生,2111081030@nbu.edu.cn

    通讯作者:

    汪小锋(1985- ),男,博士,讲师,wangxiaofeng@nbu.edu.cn

  • 中图分类号: O347.1

Mechanical behavior of additively manufactured AlSi10Mg alloy with annealing state under extreme conditions

  • 摘要: 采用激光选区熔化技术制备AlSi10Mg合金并对其进行去应力退火处理,利用光学显微镜、扫描电子显微镜和电子背散射衍射技术研究了合金的微观组织。为了解宽应变率和宽温度耦合作用对AlSi10Mg合金力学行为的影响,通过配有环境温箱的万能试验机和分离式霍普金森压杆分析了AlSi10Mg合金在极端条件下的力学行为。结果表明:AlSi10Mg合金具有精细的胞状-枝晶微观结构,主要包含α-Al相和Si相,经退火处理后,微观组织由断续的、呈链状分布的共晶Si颗粒构成。AlSi10Mg合金在室温、应变率为0.002~4 800 s−1时,呈现出应变率强化效应,且在不同的应变率范围内具有不同的敏感性;在173 K下具有更高的屈服强度和流动应力;当温度为173~243 K时,流动应力对温度不敏感;而温度为293~573 K时,温度敏感性显著提高,合金软化效应随着温度的升高而加剧。基于实验结果拟合得到修正的J-C本构模型并对其进行了验证,该模型可较好地反映材料在高、低温和不同应变率下的力学行为。
  • 图  1  AlSi10Mg粉末和粒径分布

    Figure  1.  AlSi10Mg powder and statistical analysis

    图  2  SHPB装置示意图及输出波形

    Figure  2.  Schematic diagram of SHPB and wave-propagation output

    图  3  退火态SLM AlSi10Mg合金xOy面和xOz面微观组织图像

    Figure  3.  Microstructure of xOy plane and xOz plane of SLM AlSi10Mg alloy after annealing treatment

    图  4  退火态SLM AlSi10Mg合金的EBSD谱

    Figure  4.  Annealed SLM AlSi10Mg alloy EBSD analysis

    图  5  室温及173 K、不同应变率下的真实应力-应变曲线

    Figure  5.  True stress-strain curves under different strain rates at room temperature and 173 K

    图  6  室温下ɛ=0.1时不同应变率与流动应力的关系

    Figure  6.  Relationship between different strain and flow stress at room temperature when ɛ=0.1

    图  7  0.002 s−1不同温度下的真实应力-应变曲线和温度与流动应力的关系

    Figure  7.  True stress-strain curves at different temperatures under 0.002 s−1 and relationship between temperature and flow stress

    图  8  拟合过程

    Figure  8.  Fitting process

    图  9  J-C本构模型计算数据与实验数据

    Figure  9.  Comparison between experimental data and calculated data from J-C constitutive model

    图  10  拟合过程

    Figure  10.  Fitting process

    图  11  J-C本构模型计算数据与实验数据

    Figure  11.  Comparison between experimental data and calculated data from J-C constitutive model

    图  12  本构模型预测值与实验值的相关性

    Figure  12.  Correlation between experimental values and predicted values from constitutive model

    图  13  室温及高温下本构模型的验证

    Figure  13.  Verification of constitutive models at room temperature and high temperature

    图  14  低温下本构模型的验证

    Figure  14.  Verification of constitutive models at low temperature

    表  1  AlSi10Mg粉末的组成

    Table  1.   Composition of AlSi10Mg powder %  

    AlSiMgFeMnCuTi
    88.9310.320.290.160.100.050.15
    下载: 导出CSV

    表  2  AlSi10Mg打印工艺参数

    Table  2.   Processing parameters of AlSi10Mg

    激光功率/
    W
    扫描速度/
    (m·s−1)
    扫描间距/
    mm
    层厚/
    mm
    旋转角度/
    (°)
    预热温度/
    K
    3001.20.20.0330423
    下载: 导出CSV

    表  3  修正后的J-C本构模型参数

    Table  3.   Modified J-C constitutive model parameters

    A/MPa B/MPa n C1 C2 k
    223 120 0.33 0.014 1.83×10−5 2.71
    下载: 导出CSV

    表  4  修正后的J-C本构模型温度参数

    Table  4.   Revised J-C constitutive model of temperature parameters

    T/K m
    373 1.026
    473 0.879
    573 0.590
    下载: 导出CSV

    表  5  低温J-C本构模型参数

    Table  5.   J-C constitutive model parameters at low temperature

    A/MPaB/MPanCm
    2341450.30.0142.91
    下载: 导出CSV
  • [1] XU W F, LUO Y X, ZHANG W, et al. Comparative study on local and global mechanical properties of bobbin tool and conventional friction stir welded 7085-T7452 aluminum thick plate [J]. Journal of Materials Science & Technology, 2018, 34(1): 173–184. DOI: 10.1016/j.jmst.2017.05.015.
    [2] TJONG S C, MA Z Y. Microstructural and mechanical characteristics of in situ metal matrix composites [J]. Materials Science and Engineering: R, 2000, 29(3/4): 49–113. DOI: 10.1016/S0927-796X(00)00024-3.
    [3] NG C H, YAHAYA S N M, LAI C F, et al. Reviews on the forming process of heat treatable aluminium alloys [J]. International Journal of Integrated Engineering, 2018, 10(5): 74–79. DOI: 10.30880/ijie.2018.10.05.012.
    [4] ABOULKHAIR N T, SIMONELLI M, PATTY L, et al. 3D printing of aluminium alloys: Additive manufacturing of aluminium alloys using selective laser melting [J]. Progress in Materials Science, 2019, 106: 100578. DOI: 10.1016/j.pmatsci.2019.100578.
    [5] KOTADIA H R, GIBBONS G, DAS A, et al. A review of laser powder bed fusion additive manufacturing of aluminium alloys: microstructure and properties [J]. Additive Manufacturing, 2021, 46: 102155. DOI: 10.1016/j.addma.2021.102155.
    [6] LIMBASIYA N, JAIN A, SONI H, et al. A comprehensive review on the effect of process parameters and post-process treatments on microstructure and mechanical properties of selective laser melting of AlSi10Mg [J]. Journal of Materials Research and Technology, 2022, 22(1): 1141–1176. DOI: 10.1016/j.jmrt. 2022.09.092. DOI: 10.1016/j.jmrt.2022.09.092.
    [7] SERT E, HITZLER L, HAFENSTEIN S, et al. Tensile and compressive behaviour of additively manufactured AlSi10Mg samples [J]. Progress in Additive Manufacturing, 2020, 5(3): 305–313. DOI: 10.1007/s40964-020-00131-9.
    [8] LI P, KIM Y, BOBEL A C, et al. Microstructural origin of the anisotropic flow stress of laser powder bed fused AlSi10Mg [J]. Acta Materialia, 2021, 220: 117346. DOI: 10.1016/j.actamat.2021.117346.
    [9] PONNUSAMY P, RAHMAN RASHID R A, MASOOD S H, et al. Mechanical properties of SLM-printed aluminium alloys: a review [J]. Materials, 2020, 13(19): 4301. DOI: 10.3390/ma13194301.
    [10] ZHAO L, SONG L B, MACIAS J G S, et al. Review on the correlation between microstructure and mechanical performance for laser powder bed fusion AlSi10Mg [J]. Additive Manufacturing, 2022, 56: 102914. DOI: 10.1016/j.addma.2022.102914.
    [11] PARK T H, BAEK M S, HYER H, et al. Effect of direct aging on the microstructure and tensile properties of AlSi10Mg alloy manufactured by selective laser melting process [J]. Materials Characterization, 2021, 176: 111113. DOI: 10.1016/j.matchar.2021.111113.
    [12] GIOVAGNOLI M, TOCCI M, FORTINI A, et al. Effect of different heat-treatment routes on the impact properties of an additively manufactured AlSi10Mg alloy [J]. Materials Science and Engineering: A, 2021, 802: 140671. DOI: 10.1016/j.msea.2020.140671.
    [13] KEMPF A, HILGENBERG K. Influence of heat treatments on AlSi10Mg specimens manufactured with different laser powder bed fusion machines [J]. Materials Science and Engineering: A, 2021, 818: 141371. DOI: 10.1016/j.msea.2021.141371.
    [14] RABORI A S, FALLAH V. Room temperature strain rate sensitivity of as-built 3D printed AlSi10Mg by laser powder bed fusion [J]. Materials Letters, 2022, 320: 132395. DOI: 10.1016/j.matlet.2022.132395.
    [15] BAXTER C, CYR E, ODESHI A, et al. Constitutive models for the dynamic behaviour of direct metal laser sintered AlSi10Mg_200C under high strain rate shock loading [J]. Materials Science and Engineering: A, 2018, 731: 296–308. DOI: 10.1016/j.msea.2018.06.040.
    [16] NUREL B, NAHMANY M, FRAGE N, et al. Split Hopkinson pressure bar tests for investigating dynamic properties of additively manufactured AlSi10Mg alloy by selective laser melting [J]. Additive Manufacturing, 2018, 22: 823–833. DOI: 10.1016/j.addma.2018.06.001.
    [17] ALKHATIB S E, SERCOMBE T B. High strain-rate response of additively manufactured light metal alloys [J]. Materials & Design, 2022, 217: 110664. DOI: 10.1016/j.matdes.2022.110664.
    [18] ZARETSKY E, STERN A, FRAGE N. Dynamic response of AlSi10Mg alloy fabricated by selective laser melting [J]. Materials Science and Engineering: A, 2017, 688: 364–370. DOI: 10.1016/j.msea.2017.02.004.
    [19] CAO Y, LIN X, WANG Q Z, et al. Microstructure evolution and mechanical properties at high temperature of selective laser melted AlSi10Mg [J]. Journal of Materials Science & Technology, 2021, 62: 162–172. DOI: 10.1016/j.jmst.2020.04.066.
    [20] GHASHGHAY B R, ABEDI H R, SHABESTARI S G, et al. Comparatively evaluating the room and high temperature mechanical properties of AlSi10Mg alloy produced by selective laser melting [J]. Journal of Materials Research and Technology, 2022, 21: 3570–3578. DOI: 10.1016/j.jmrt.2022.10.162.
    [21] SALANDARI-RABORI A, DIAK B J, FALLAH V. Dislocation-obstacle interaction evolution in rate dependent plasticity of AlSi10Mg as-built microstructure by laser powder bed fusion [J]. Materials Science and Engineering: A, 2022, 857: 144043. DOI: 10.1016/j.msea.2022.144043.
    [22] THIJS L, KEMPEN K, KRUTH J P, et al. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder [J]. Acta Materialia, 2013, 61(5): 1809–1819. DOI: 10.1016/j.actamat.2012.11.052.
    [23] 张文奇, 朱海红, 胡志恒, 等. AlSi10Mg的激光选区熔化成形研究 [J]. 金属学报, 2017, 53(8): 918–926. DOI: 10.11900/0412.1961.2016.00472.

    ZHANG W Q, ZHU H H, HU Z H, et al. Study on Selective Laser Melting of AlSi10Mg [J]. Acta Metallurgica Sinica, 2017, 53(8): 918–926. DOI: 10.11900/0412.1961.2016.00472.
    [24] ALGHAMDI F, SONG X, HADADZADEH A, et al. Post heat treatment of additive manufactured AlSi10Mg: on silicon morphology, texture and small-scale properties [J]. Materials Science and Engineering: A, 2020, 783: 139296. DOI: 10.1016/j.msea.2020.139296.
    [25] FATHI P, RAFIEAZAD M, DUAN X, et al. On microstructure and corrosion behaviour of AlSi10Mg alloy with low surface roughness fabricated by direct metal laser sintering [J]. Corrosion Science, 2019, 157: 126–145. DOI: 10.1016/j.corsci.2019.05.032.
    [26] WANG X F, SHI T Y, WANG H B, et al. Mechanical behavior and microstructure evolution of Al-Mg-Si-Cu alloy under tensile loading at different strain rates [J]. Materials Research Express, 2019, 6(6): 066548. DOI: 10.1088/2053-1591/ab08d7.
    [27] YAN S L, YANG H, LI H W, et al. Variation of strain rate sensitivity of an aluminum alloy in a wide strain rate range: mechanism analysis and modeling [J]. Journal of Alloys and Compounds, 2016, 688: 776–786. DOI: 10.1016/j.jallcom.2016.07.077.
    [28] ZHANG C S, WANG C X, GUO R, et al. Investigation of dynamic recrystallization and modeling of microstructure evolution of an Al-Mg-Si aluminum alloy during high-temperature deformation [J]. Journal of Alloys and Compounds, 2019, 773: 59–70. DOI: 10.1016/j.jallcom.2018.09.263.
    [29] 李娜, 李玉龙, 郭伟国. 3种铝合金材料动态性能及其温度相关性对比研究 [J]. 航空学报, 2008, 29(4): 903–908. DOI: 10.3321/j.issn:1000-6893.2008.04.022.

    LI N, LI Y L, GUO W G. Comparison of mechanical properties and their temperature dependencies for three aluminium alloys under dynamic load [J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4): 903–908. DOI: 10.3321/j.issn:1000-6893.2008.04.022.
    [30] 汪存显, 索涛, 李玉龙, 等. 不同温度和应变速率下超细晶铝的力学行为 [J]. 中国有色金属学报, 2014, 24(5): 1200–1205. DOI: 10.19476/j.ysxb.1004.0609.2014.05.012. DOI: 10.19476/j.ysxb.1004.0609.2014.05.012.

    WANG C X, SUO T, LI Y L, et al. Mechanical behavior of ultra-grained aluminum at different temperatures and strain rates [J]. The Chinese Journal of Nonferrous Metals, 2014, 24(5): 1200–1205. DOI: 10.19476/j.ysxb.1004.0609.2014.05.012.
    [31] LIU Y H, NING Y Q, YANG X M, et al. Effect of temperature and strain rate on the workability of FGH4096 superalloy in hot deformation [J]. Materials and Design, 2016, 95: 669–676. DOI: 10.1016/j.matdes.2016.01.032.
    [32] LIU C M, LI C G, ZHANG Z, et al. Modeling of thermal behavior and microstructure evolution during laser cladding of AlSi10Mg alloys [J]. Optics and Laser Technology, 2020, 123: 105926. DOI: 10.1016/j.optlastec.2019.105926.
    [33] 刘旭红, 黄西成, 陈裕泽, 等. 强动载荷下金属材料塑性变形本构模型评述 [J]. 力学进展, 2007, 37(3): 361–374. DOI: 10.3321/j.issn:1000-0992.2007.03.004.

    LIU X H, HUANG X C, CHEN Y Z, et al. A review on constitutive models for plastic deformation of metal materials under dynamic loading [J]. Advances in Mechanics, 2007, 37(3): 361–374. DOI: 10.3321/j.issn:1000-0992.2007.03.004.
    [34] WAYMEL R F, CHEW H B, LAMBROS J. Loading orientation effects on the strength anisotropy of additively-manufactured Ti-6Al-4V alloys under dynamic compression [J]. Experimental Mechanics, 2019, 59: 829–841. DOI: 10.1007/s11340-019-00506-2.
    [35] YUAN K B, GUO W G, LI P H, et al. Thermomechanical behavior of laser metal deposited Inconel 718 superalloy over a wide range of temperature and strain rate: Testing and constitutive modeling [J]. Mechanics of Materials, 2019, 135: 13–25. DOI: 10.1016/j.mechmat.2019.04.024.
    [36] ALKHATIB S E, XU S Q, LU G X, et al. Dynamic constitutive behavior of LPBFed metal alloys [J]. Journal of Materials Research and Technology, 2023. DOI: 10.1016/j.jmrt.2023.05.252.
    [37] STANCZAK M, RUSINEK A, BRONISZEWSKA P, et al. Influence of strain rate and temperature on the mechanical behaviour of additively manufactured AlSi10Mg alloy–experiment and the phenomenological constitutive modelling [J]. Bulletin of the Polish Academy of Sciences. Technical Sciences, 2022, 70(4). DOI: 10.24425/bpasts.2022.141983.
    [38] 周琳. 金属材料新的动态本构模型 [D]. 合肥: 中国科学技术大学, 2019: 20. DOI: 10.27517/d.cnki.gzkju.2019.000016.
    [39] ZHANG F, LIU Z, WANG Y, et al. The modified temperature term on Johnson-Cook constitutive model of AZ31 magnesium alloy with {0002} texture [J]. Journal of Magnesium and Alloys, 2020, 8(1): 172–183. DOI: 10.1016/j.jma.2019.05.013.
    [40] TRIMBLE D, O'DONNELL G E. Flow stress prediction for hot deformation processing of 2024Al-T3 alloy [J]. Transactions of Nonferrous Metals Society of China, 2016, 26(5): 1232–1250. DOI: 10.1016/S1003-6326(16)64194-8.
  • 加载中
图(14) / 表(5)
计量
  • 文章访问数:  119
  • HTML全文浏览量:  32
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-15
  • 修回日期:  2024-08-15
  • 网络出版日期:  2024-08-16

目录

    /

    返回文章
    返回