• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

磨料水射流破岩射孔孔道形成机制

徐鹏 盛茂 田克钧 田守嶒 黄中伟 李根生

徐鹏, 盛茂, 田克钧, 田守嶒, 黄中伟, 李根生. 磨料水射流破岩射孔孔道形成机制[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0156
引用本文: 徐鹏, 盛茂, 田克钧, 田守嶒, 黄中伟, 李根生. 磨料水射流破岩射孔孔道形成机制[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0156
XU Peng, SHENG Mao, TIAN Kejun, TIAN Shouceng, HUANG Zhongwei, LI Gensheng. On formation mechanism of perforation channel during rock breaking by abrasive water jet[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0156
Citation: XU Peng, SHENG Mao, TIAN Kejun, TIAN Shouceng, HUANG Zhongwei, LI Gensheng. On formation mechanism of perforation channel during rock breaking by abrasive water jet[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0156

磨料水射流破岩射孔孔道形成机制

doi: 10.11883/bzycj-2024-0156
基金项目: 国家自然科学基金(52122401)
详细信息
    作者简介:

    徐 鹏(1997- ),男,博士研究生,13126690311@163.com

    通讯作者:

    盛 茂(1985- ),男,博士,教授,shengmao@cup.edu.cn

  • 中图分类号: TE248

On formation mechanism of perforation channel during rock breaking by abrasive water jet

  • 摘要: 磨料水射流射孔是一种有效的油气井射孔增产手段,然而,孔道形成机制及其参数调控规律仍是亟待解决的问题之一。鉴于此,设计并开展了磨料水射流射孔实验。结果表明,孔道形成过程是3种物理作用耦合的结果,即:入流垂直冲蚀孔尖岩石加深孔道;返流以小角度冲蚀孔壁岩石达到扩径作用;沿程流体机械能耗散使得射孔后期孔道演化变缓。由于入流破岩能力远强于返流破岩能力,磨料水射流射孔孔道的孔深和孔径的比随喷射时间的延长而增大,喷射5~300 s,孔深与孔径的比由7增大到28。返流的破岩能力由孔尖到孔口递减,返流对孔壁岩石的累积作用时间由孔尖到孔口递增,二者的共同影响使孔道由圆锥状向纺锤状演化。随着喷射时间的延长,孔深增大,沿程流体机械能耗散加剧,孔深变化率降低至11.3%,孔径变化率降低至4.3%,孔形演化变缓。
  • 图  1  磨料水射流射孔实验系统

    Figure  1.  Experimental system of abrasive water jet perforation

    图  2  磨料水射流水力学参数标定

    Figure  2.  Calibration of hydraulic parameters of abrasive water jet

    图  3  磨料水射流射孔实验流程

    Figure  3.  Experimental process of abrasive water jet perforation

    图  4  孔形参数计算模型

    Figure  4.  A calculation model of hole shape parameters

    图  5  磨料水射流射孔孔道形状随喷射时间的变化

    Figure  5.  Change of perforation shape of abrasive water jet with injection time

    图  6  不同喷射时间孔道轴截面

    Figure  6.  Axial cross sections of the holes at different injection times

    图  7  不同喷射时间孔深和对应孔道半径

    Figure  7.  Relationship between hole depth and hole radius at different injection times

    图  8  孔道尺寸随喷射时间的变化

    Figure  8.  Variations of hole sizes with injection time

    图  9  孔深和孔径随喷射时间的变化

    Figure  9.  Variations of hole depth and hole radius with injection time

    图  10  不同深度的孔径随喷射时间的变化

    Figure  10.  Variation of hole radius at different depths with injection time

    图  11  磨料水射流射孔过程岩石破碎规律

    Figure  11.  Rock breaking regularity during abrasive water jet perforation

    图  12  磨料水射流射孔原理图

    Figure  12.  Schematic diagram of abrasive water jet perforation

    图  13  磨料水射流射孔过程破岩体积贡献

    Figure  13.  Contribution of rock breaking volume during abrasive water jet perforation

    表  1  不同喷射时间孔深-孔径拟合函数参数

    Table  1.   Fitting function parameters for relationship between hole depth and hole radius at different injection times

    喷射时间/s a1/mm−1 b1 c1/mm R2 喷射时间/s a1/mm−1 b1 c1/mm R2
    5 0.0024 −0.09 2.60 1.00 120 0.0008 0.02 3.40 0.98
    10 0.0012 −0.08 2.76 0.94 180 0.0007 0.03 3.80 0.96
    20 0.0012 −0.04 2.91 0.94 240 0.0006 0.03 3.90 0.98
    40 0.0012 −0.01 3.12 0.99 300 0.0005 0.04 3.87 0.97
    60 0.0011 0.01 3.18 0.98
    下载: 导出CSV

    表  2  不同深度的孔径-喷射时间拟合函数参数

    Table  2.   Fitting function parameters of the hole radius with injection time at different depths

    深度/mm a2/(mm·s−1) b2/s c2 R2 深度/mm a2/(mm·s−1) b2/s c2 R2
    0 1.82 0.00 0.13 0.98 50 0.23 42.69 0.54 0.98
    5 1.50 0.31 0.18 0.99 55 0.17 52.33 0.59 0.98
    10 1.12 1.37 0.24 0.99 60 0.25 63.01 0.52 0.99
    15 0.60 3.26 0.36 0.96 65 0.20 74.76 0.55 0.99
    20 0.42 6.03 0.43 0.94 70 0.16 87.58 0.59 0.99
    25 0.47 9.71 0.41 0.97 75 0.12 101.49 0.65 0.99
    30 0.32 14.34 0.49 0.96 80 0.09 116.49 0.69 0.99
    35 0.37 19.93 0.45 0.98 85 0.16 132.59 0.57 0.99
    40 0.27 26.50 0.51 0.97 90 0.12 149.81 0.62 0.99
    45 0.20 34.09 0.57 0.97 95 0.10 168.14 0.64 0.98
    下载: 导出CSV
  • [1] 李根生, 沈忠厚. 高压水射流理论及其在石油工程中应用研究进展 [J]. 石油勘探与开发, 2005, 32(1): 96–99. DOI: 10.3321/j.issn:1000-0747.2005.01.026.

    LI G S, SHEN Z H. Advances in researches and applications of water jet theory in petroleum engineering [J]. Petroleum Exploration and Development, 2005, 32(1): 96–99. DOI: 10.3321/j.issn:1000-0747.2005.01.026.
    [2] 黄中伟, 李根生, 唐志军, 等. 水力喷射侧钻径向微小井眼技术 [J]. 石油钻探技术, 2013, 41(4): 37–41. DOI: 10.3969/j.issn.1001-0890.2013.04.009.

    HUANG Z W, LI G S, TANG Z J, et al. Technology of hydra-jet sidetracking of horizontal micro-radial laterals [J]. Petroleum Drilling Techniques, 2013, 41(4): 37–41. DOI: 10.3969/j.issn.1001-0890.2013.04.009.
    [3] 田守嶒, 李根生, 黄中伟, 等. 水力喷射压裂机理与技术研究进展 [J]. 石油钻采工艺, 2008, 30(1): 58–62. DOI: 10.3969/j.issn.1000-7393.2008.01.016.

    TIAN S Z, LI G S, HUANG Z W, et al. Research on hydrajet fracturing mechanisms and technologies [J]. Oil Drilling & Production Technology, 2008, 30(1): 58–62. DOI: 10.3969/j.issn.1000-7393.2008.01.016.
    [4] 黄中伟, 李根生. 水力射孔参数对起裂压力影响的实验研究 [J]. 中国石油大学学报(自然科学版), 2007, 31(6): 48–50, 54. DOI: 10.3321/j.issn:1000-5870.2007.06.011.

    HUANG Z W, LI G S. Experimental study on effects of hydrau-perforation parameters on initial fracturing pressure [J]. Journal of China University of Petroleum, 2007, 31(6): 48–50. DOI: 10.3321/j.issn:1000-5870.2007.06.011.
    [5] LI H, HUANG Z W, LI J B, et al. Effect of nozzle structure on rock drilling performances of abrasive waterjet [C]//57th U. S. Rock Mechanics/Geomechanics Symposium. Atlanta: ARMA, 2023: ARMA-2023-0252.
    [6] XUE Y Z, SI H, XU D Y, et al. Experiments on the microscopic damage of coal induced by pure water jets and abrasive water jets [J]. Powder Technology, 2018, 332: 139–149. DOI: 10.1016/j.powtec.2018.03.051.
    [7] SURJAATMADJA J B, BAILEY A, SIERRA S. HydraJet testing under deep well conditions defines new requirements for hard-rock perforating [C]//SPE Rocky Mountain Petroleum Technology Conference. Denver: SPE, 2009: SPE-122817-MS. DOI: 10.2118/122817-MS.
    [8] EAST L, ROSATO J, FARABEE M, et al. Packerless multistage fracture-stimulation method using CT perforating and annular path pumping [C]//SPE Annual Technical Conference and Exhibition. Dallas: SPE, 2005: SPE-96732-MS. DOI: 10.2118/96732-MS.
    [9] 李根生, 牛继磊, 刘泽凯, 等. 水力喷砂射孔机理实验研究 [J]. 石油大学学报(自然科学版), 2002, 26(2): 31–34. DOI: 10.3321/j.issn:1000-5870.2002.02.009.

    LI G S, NIU J L, LIU Z K, et al. Experimental study on mechanisms of hydraulic sand blasting perforation for improvement of oil production [J]. Journal of China University of Petroleum (Edition of Natural Science), 2002, 26(2): 31–34. DOI: 10.3321/j.issn:1000-5870.2002.02.009.
    [10] NAKHWA A D, LOVING S W, FERGUSON A, et al. Oriented perforating using abrasive fluids through coiled tubing [C]//SPE/ICoTA Coiled Tubing and Well Intervention Conference and Exhibition. The Woodlands: SPE, 2007: SPE-107061-MS. DOI: 10.2118/107061-MS.
    [11] 李宪文, 赵振峰, 付钢旦, 等. 水力喷砂射孔孔道形态研究 [J]. 石油钻采工艺, 2012, 34(2): 55–58. DOI: 10.3969/j.issn.1000-7393.2012.02.015.

    LI X W, ZHAO Z F, FU G D, et al. Research on channel pattern of hydraulic sand blasting perforation [J]. Oil Drilling & Production Technology, 2012, 34(2): 55–58. DOI: 10.3969/j.issn.1000-7393.2012.02.015.
    [12] 汤积仁, 卢义玉, 孙惠娟, 等. 基于CT方法的磨料射流冲蚀损伤岩石特性研究 [J]. 岩石力学与工程学报, 2016, 35(2): 297–302. DOI: 10.13722/j.cnki.jrme.2015.0881.

    TANG J R, LU Y Y, SUN H J, et al. Study of erosion and damage characteristics of rock by abrasive water jet using CT [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 297–302. DOI: 10.13722/j.cnki.jrme.2015.0881.
    [13] HUANG F, ZHAO Z Q, LI D, et al. Investigation of the breaking manifestations of bedded shale impacted by a high-pressure abrasive water jet [J]. Powder Technology, 2022, 397: 117021. DOI: 10.1016/j.powtec.2021.11.065.
    [14] LI Z T, GE Z L, ZHOU Z, et al. Micro-failure behaviors of mineral crystals in reservoir rocks impacted by abrasive water jet [J]. Geoenergy Science and Engineering, 2024, 241: 213170. DOI: 10.1016/j.geoen.2024.213170.
    [15] MI J Y, TANG J R, LIU W C, et al. Investigation of fracturing in heterogeneous rocks with cracks under abrasive water jet impact using pixel method [J]. Powder Technology, 2024, 443: 119900. DOI: 10.1016/j.powtec.2024.119900.
    [16] SHANGGUAN J M, GE Z L, ZHOU Z, et al. Damage and fracture characteristics of thermal-treated granite subjected to ultra-high pressure jet [J]. Geoenergy Science and Engineering, 2024, 241: 213174. DOI: 10.1016/j.geoen.2024.213174.
    [17] KAYA S, AYDIN G, KARAKURT I. An experimental study on the cutting depth produced by abrasive waterjet: how do abrasive and rock properties affect the cutting process? [J]. The International Journal of Advanced Manufacturing Technology, 2023, 125(9): 4811–4823. DOI: 10.1007/s00170-023-11053-5.
    [18] 牛继磊, 李根生, 宋剑, 等. 水力喷砂射孔参数实验研究 [J]. 石油钻探技术, 2003, 31(2): 14–16. DOI: 10.3969/j.issn.1001-0890.2003.02.006.

    NIU J L, LI G S, SONG J, et al. An experimental study on abrasive water jet perforation parameters [J]. Petroleum Drilling Techniques, 2003, 31(2): 14–16. DOI: 10.3969/j.issn.1001-0890.2003.02.006.
    [19] QU H, TANG S M, SHENG M, et al. Experimental investigation of the damage characteristics and breaking process of shale by abrasive waterjet impact [J]. Journal of Petroleum Science and Engineering, 2022, 211: 110165. DOI: 10.1016/j.petrol.2022.110165.
    [20] QU H, WU X G, LIU Y, et al. Effect of shale mineralogy characteristics on the perforation performance and particle fragmentation of abrasive waterjet [J]. Powder Technology, 2020, 367: 427–442. DOI: 10.1016/j.powtec.2020.03.068.
    [21] CAI C, WANG X C, YUAN X H, et al. Experimental investigation on perforation of shale with ultra-high pressure abrasive water jet: shape, mechanism and sensitivity [J]. Journal of Natural Gas Science and Engineering, 2019, 67: 196–213. DOI: 10.1016/j.jngse.2019.05.002.
    [22] LI Z T, GE Z L, ZHOU Z, et al. Numerical simulation and experimental verification of heterogeneous granite impacted by abrasive water jet based on SPH-FEM coupling algorithm [J]. Powder Technology, 2023, 416: 118233. DOI: 10.1016/j.powtec.2023.118233.
    [23] XUE Y Z, SI H, CHEN G H. The fragmentation mechanism of coal impacted by water jets and abrasive jets [J]. Powder Technology, 2020, 361: 849–859. DOI: 10.1016/j.powtec.2019.11.018.
    [24] 薛胜雄. 高压水射流技术与应用 [J]. 中国安全科学学报, 1999, 9(S1): 92–92. DOI: 10.3969/j.issn.1003-3033.1999.z1.028.

    XUE S X. High pressure water jet technology and application [J]. China Safety Science Journal, 1999, 9(S1): 92–92. DOI: 10.3969/j.issn.1003-3033.1999.z1.028.
    [25] 薛永志. 高压水射流冲击下煤岩损伤诱导机制及分布特性研究 [D]. 重庆: 重庆大学, 2018.

    XUE Y Z. Study on the inducement and distribution of damage in coal impacted by high pressure water jets [D]. Chongqing: Chongqing University, 2018.
    [26] VAN GIJTENBEEK K A, SURJAATMADJA J B, HEITMAN C. Unique hydrajet tool provides cost savings and improved performance in placing many perforations and proppant fractures in horizontal wellbores [C]//Tight Gas Technology Symposium. San Antonio: SPE, 2010: SPE-130255-MS. DOI: 10.2118/130255-MS.
    [27] STOCKHAUSEN H W, GARCÍA SANCHEZ D G, LUONGO S A, et al. In-depth evaluation of deep-rock hydrajet results shows unique jetted rock surface characteristics [C]//SPE Europec/EAGE Annual Conference. Copenhagen: Society of Petroleum Engineers, 2012. DOI: 10.2118/153333-MS.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  86
  • HTML全文浏览量:  17
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-25
  • 修回日期:  2025-03-12
  • 网络出版日期:  2025-03-17

目录

    /

    返回文章
    返回