多次落石冲击下棚洞结构动力响应数值模拟

刘红岩 吕泽鹏 刘康琦 周月智 常书瑞 薛雷 张光雄

刘红岩, 吕泽鹏, 刘康琦, 周月智, 常书瑞, 薛雷, 张光雄. 多次落石冲击下棚洞结构动力响应数值模拟[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0159
引用本文: 刘红岩, 吕泽鹏, 刘康琦, 周月智, 常书瑞, 薛雷, 张光雄. 多次落石冲击下棚洞结构动力响应数值模拟[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0159
LIU Hongyan, LYU Zepeng, LIU Kangqi, ZHOU Yuezhi, CHANG Shurui, XUE Lei, ZHANG Guangxiong. Numerical simulation on dynamic response of the shed-tunnel structure under multiple rockfall impacts[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0159
Citation: LIU Hongyan, LYU Zepeng, LIU Kangqi, ZHOU Yuezhi, CHANG Shurui, XUE Lei, ZHANG Guangxiong. Numerical simulation on dynamic response of the shed-tunnel structure under multiple rockfall impacts[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0159

多次落石冲击下棚洞结构动力响应数值模拟

doi: 10.11883/bzycj-2024-0159
基金项目: 新疆维吾尔自治区“天池英才”领军人才计划项目(2023);国家重点研发计划项目(2019YFC1509701).
详细信息
    作者简介:

    刘红岩(1975- ),男,博士,教授,Lhyan1204@126.com

  • 中图分类号: O344; TU443

Numerical simulation on dynamic response of the shed-tunnel structure under multiple rockfall impacts

  • 摘要: 为探究多次落石冲击下棚洞结构的动力响应特征,建立并验证了基于ANSYS/LS-DYNA有限元软件的落石冲击棚洞FEM-SPH耦合数值模型,并结合LS-DYNA完全重启动技术,研究了落石冲击速度、质量、冲击角度、形状等4个因素对多次落石冲击棚洞结构动力响应的影响。结果表明:冲击力、缓冲层顶部冲击位移、棚顶位移、棚洞塑性应变均与落石质量、速度、冲击方向与棚洞平面的夹角成正相关;长方体落石冲击产生的冲击力、棚顶位移和塑性应变均大于球体落石,球体落石产生的冲击位移大于长方体;对于长方体落石,冲击位移、棚顶位移、塑性应变与接触面积成负相关;随着落石冲击次数的增加,峰值冲击力通常会先增大而后趋于稳定。
  • 图  1  FEM-SPH耦合数值模型

    Figure  1.  The numerical model coupling FEM and SPH

    图  2  SPH-FEM接触算法

    Figure  2.  Contact algorithm of SPH-FEM

    图  3  冲击力计算结果对比图

    Figure  3.  Comparison of impact force calculation results

    图  4  钢筋混凝土板破坏过程的模拟与试验结果对比

    Figure  4.  Comparison between the simulated and test results of the reinforced concrete plane damaging process

    图  5  不同落石质量下缓冲层冲击力时程曲线

    Figure  5.  Time history of the impact forces on the buffer with different rock mass

    图  6  不同落石质量下缓冲层顶部冲击位移时程曲线

    Figure  6.  Time history of the buffer top displacements with different masses of the rock

    图  7  不同落石质量下棚顶位移时程曲线

    Figure  7.  The time history curve of the shed roof displacements with different masses of the rock

    图  8  钢筋对棚顶位移影响

    Figure  8.  Effect of the rebar on the shed roof displacement

    图  9  不同落石质量下棚洞塑性应变云图

    Figure  9.  Plastic strain contours of shed-tunnel with different masses of the rock

    图  10  不同冲击速度下缓冲层冲击力时程曲线

    Figure  10.  Time history of the impact forces on the buffer with different velocities

    图  11  不同冲击速度下缓冲层顶部冲击位移时程曲线

    Figure  11.  Time history of the buffer top displacements with different impact velocities

    图  12  不同冲击速度下棚顶位移时程曲线

    Figure  12.  Time history of the shed roof displacements with different impact velocities

    图  13  不同冲击速度下棚洞塑性应变云图

    Figure  13.  Plastic strain contours of shed-tunnel with different impact velocities

    图  14  不同落石形状下缓冲层冲击力时程曲线

    Figure  14.  Time history of the impact forces on the buffer with different rock shapes

    图  15  不同落石形状下缓冲层顶部冲击位移时程曲线

    Figure  15.  Time history of the buffer top displacement with different rock shapes

    图  16  不同落石形状下棚顶位移时程曲线

    Figure  16.  Time history of the shed roof displacement with different rock shapes

    图  17  不同落石形状下棚洞塑性应变云图

    Figure  17.  Plastic strain contours of shed-tunnel with different rock shapes

    图  18  不同冲击角度下缓冲层冲击力时程曲线

    Figure  18.  Time history of the impact forces on the buffer with different impact angles

    图  19  不同冲击角度下缓冲层顶部冲击位移时程曲线

    Figure  19.  Time history of the buffer top displacements with different impact angles

    图  20  不同冲击角度下棚顶位移时程曲线

    Figure  20.  Time history of the shed roof displacements with different impact angles

    图  21  不同冲击角度下棚洞塑性应变云图

    Figure  21.  Plastic strain contours of shed-tunnel with different impact angles

    图  22  冲击力随冲击次数的变化曲线(标在曲线上,两个量)

    Figure  22.  Variation of the impact force with the impact number

    表  1  材料物理力学参数表

    Table  1.   The material physical and mechanical parameters

    材料弹性模量/MPa密度/(kg·m−3)泊松比内摩擦角/(°)粘聚力/kPa抗压强度/MPa屈服强度/MPa
    落石335002097.860.3////
    缓冲垫层1515400.273020//
    混凝土3000024000.167//30/
    钢筋20000078500.3///335
    下载: 导出CSV
  • [1] DORREN L K A. A review of rockfall mechanics and modelling approaches [J]. Progress in Physical Geography: Earth and Environment, 2003, 27(1): 69–87. DOI: 10.1191/0309133303pp359ra.
    [2] LI L P, LAN H X. Probabilistic modeling of rockfall trajectories: a review [J]. Bulletin of Engineering Geology and the Environment, 2015, 74(4): 1163–1176. DOI: 10.1007/s10064-015-0718-9.
    [3] 吴长, 丁金伟, 黄贵武. 滚石冲击下新型组合棚洞结构的动力响应分析 [J]. 建筑结构, 2018, 48(S2): 546–549. DOI: 10.19701/j.jzjg.2018.S2.110.

    WU C, DING J W, HUANG G W. Dynamic response analysis of a new composite shed-tunnel structure under the rockfall impact [J]. Building Structure, 2018, 48(S2): 546–549. DOI: 10.19701/j.jzjg.2018.S2.110.
    [4] HERTZ H. Über die Berührung fester elastischer Körper [J]. Journal fur die Reine und Angewandte Mathematik, 1882, 92: 156–171.
    [5] 何思明, 李新坡, 吴永. 考虑弹塑性变形的泥石流大块石冲击力计算 [J]. 岩石力学与工程学报, 2007, 26(8): 1664–1669. DOI: 10.3321/j.issn:1000-6915.2007.08.017.

    HE S M, LI X P, WU Y. Calculation of impact force of outrunner blocks in debris flow considering elastoplastic deformation [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(8): 1664–1669. DOI: 10.3321/j.issn:1000-6915.2007.08.017.
    [6] 陈颖骐, 王全才. 基于Hertz弹性理论和Thornton弹塑性假设的滚石冲击力的修正计算 [J]. 科学技术与工程, 2018, 18(13): 37–41. DOI: 10.3969/j.issn.1671-1815.2018.13.006.

    CHEN Y Q, WANG Q C. Correction calculation of impact force of rockfall based on Hertz contact theory and Thornton elastoplasticity hypothesis [J]. Science Technology and Engineering, 2018, 18(13): 37–41. DOI: 10.3969/j.issn.1671-1815.2018.13.006.
    [7] THORNTON C. Coefficient of restitution for collinear collisions of elastic–perfectly plastic spheres [J]. Journal of Applied Mechanics-Transactions of the ASME,, 1997, 64: 383–386. DOI: 10.1115/1.2787319.
    [8] ZHENG D, BINIENDA W K. Effect of permanent indentation on the delamination threshold for small mass impact on plates [J]. International Journal of Solids and Structures, 2007, 44(25/26): 8143–8158. DOI: 10.1016/j.ijsolstr.2007.06.005.
    [9] 陈泰江, 章广成, 向欣. 落石冲击混凝土棚洞力学特性研究 [J]. 岩土力学, 2022, 43(1): 277–285,298. DOI: 10.16285/j.rsm.2021.0890.

    CHEN T J, ZHANG G C, XIANG X. Investigations on mechanical characteristics of rockfall impact on concrete shed cave [J]. Rock and Soil Mechanics, 2022, 43(1): 277–285,298. DOI: 10.16285/j.rsm.2021.0890.
    [10] 刘红岩. 落石冲击下钢筋混凝土桩板墙的动态响应 [J]. 中南大学学报(自然科学版), 2022, 53(6): 2290–2299. DOI: 10.11817/j.issn.1672-7207.2022.06.029.

    LIU H Y. Dynamic damage model for reinforced concrete pile-plate retaining wall under rockfall impact [J]. Journal of Central South University (Science and Technology), 2022, 53(6): 2290–2299. DOI: 10.11817/j.issn.1672-7207.2022.06.029.
    [11] 闫鹏, 方秦, 张锦华, 等. 不同典型形状落石冲击砂垫层试验与量纲分析 [J]. 爆炸与冲击, 2021, 41(7): 073303. DOI: 10.11883/bzycj-2020-0219.

    YAN P, FANG Q, ZHANG J H, et al. Experimental study of different typical shape falling-rocks impacting on the sand cushion and dimensionless analysis [J]. Explosion and Shock Waves, 2021, 41(7): 073303. DOI: 10.11883/bzycj-2020-0219.
    [12] WU J L, MA G T, ZHOU Z H, et al. Experimental investigation of impact response of RC slabs with a sandy soil cushion layer [J]. Advances in Civil Engineering, 2021, 2021(1): 1562158. DOI: 10.1155/2021/1562158.
    [13] NAKAJIMA S, ABE K, SHINODA M, et al. Experimental study on impact force due to collision of rockfall and sliding soil mass caused by seismic slope failure [J]. Landslides, 2021, 18(1): 195–216. DOI: 10.1007/s10346-020-01461-z.
    [14] 苏宇宸, 王媛, 唐辉明, 等. 落石连续冲击下废弃混凝土垫层宏细观缓冲机制研究 [J]. 岩土力学, 2022, 43(10): 2698–2706. DOI: 10.16285/j.rsm.2021.1709.

    SU Y C, WANG Y, TANG H M, et al. Macro-mesoscopic investigation of cushioning mechanism of recycled concrete aggregate under successive rockfall impacts [J]. Rock and Soil Mechanics, 2022, 43(10): 2698–2706. DOI: 10.16285/j.rsm.2021.1709.
    [15] SHEN W G, ZHAO T, DAI F, et al. DEM analyses of rock block shape effect on the response of rockfall impact against a soil buffering layer [J]. Engineering Geology, 2019, 249: 60–70. DOI: 10.1016/j.enggeo.2018.12.011.
    [16] OUYANG C J, LIU Y, WANG D P, et al. Dynamic analysis of rockfall impacts on geogrid reinforced soil and eps absorption cushions [J]. KSCE Journal of Civil Engineering, 2019, 23(1): 37–45. DOI: 10.1007/s12205-018-0704-4.
    [17] 王爽, 周晓军, 姜波, 等. 落石冲击下隧道大跨度棚洞的动力响应数值分析与抗冲击研究 [J]. 爆炸与冲击, 2016, 36(4): 548–556. DOI: 10.11883/1001-1455(2016)04-0548-09.

    WANG S, ZHOU X J, JIANG B, et al. Numerical analysis of dynamic response and impact resistance of a large-span rock shed in a tunnel under rockfall impact [J]. Explosion and Shock Waves, 2016, 36(4): 548–556. DOI: 10.11883/1001-1455(2016)04-0548-09.
    [18] ZHONG H Q, LYU L, YU Z X, et al. Study on mechanical behavior of rockfall impacts on a shed slab based on experiment and SPH–FEM coupled method [J]. Structures, 2021, 33: 1283–1298. DOI: 10.1016/j.istruc.2021.05.021.
    [19] WANG H B, GUO C C, WANG F M, et al. Peridynamics simulation of structural damage characteristics in rock sheds under rockfall impact [J]. Computers and Geotechnics, 2022, 143: 104625. DOI: 10.1016/j.compgeo.2021.104625.
    [20] 黄福有, 张路青, 周剑, 等. 落石冲击作用下棚洞垫层动力响应的颗粒级配效应耦合数值模拟研究 [J]. 岩石力学与工程学报, 2023, 42(2): 413–428. DOI: 10.13722/j.cnki.jrme.2022.0519.

    HUANG F Y, ZHANG L Q, ZHOU J, et al. Coupled numerical simulation study on particle gradation effect of the dynamic response of shed cushion under rockfall impact [J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(2): 413–428. DOI: 10.13722/j.cnki.jrme.2022.0519.
    [21] OLSSON R. Analytical model for delamination growth during small mass impact on plates [J]. International Journal of Solids and Structures, 2010, 47(21): 2884–2892. DOI: 10.1016/j.ijsolstr.2010.06.015.
    [22] 王东坡, 刘洋, 裴向军, 等. 滚石冲击钢筋混凝土板的弹塑性动力响应研究 [J]. 西南交通大学学报, 2016, 51(6): 1147–1153. DOI: 10.3969/j.issn.0258-2724.2016.06.014.

    WANG D P, LIU Y, PEI X J, et al. Elasto-plastic dynamic responses of reinforced concrete slabs under rockfall impact [J]. Journal of Southwest Jiaotong University, 2016, 51(6): 1147–1153. DOI: 10.3969/j.issn.0258-2724.2016.06.014.
    [23] 王东坡, 刘浩, 裴向军, 等. 基于离散元-有限差分耦合的滚石冲击棚洞垫层动力响应研究 [J]. 振动与冲击, 2021, 40(19): 246–253. DOI: 10.13465/j.cnki.jvs.2021.19.031.

    WANG D P, LIU H, PEI X J, et al. Dynamic response of shed tunnel cushion under rolling stone impact based on discrete element-finite difference coupling [J]. Journal of Vibration and Shock, 2021, 40(19): 246–253. DOI: 10.13465/j.cnki.jvs.2021.19.031.
    [24] PHAM A T, TAN K H, YU J. Numerical investigations on static and dynamic responses of reinforced concrete sub-assemblages under progressive collapse [J]. Engineering Structures, 2017, 149: 2–20. DOI: 10.1016/j.engstruct.2016.07.042.
    [25] 铁道部第二勘测设计院. 铁路工程设计技术手册·隧道(修订版) [M]. 北京: 中国铁道出版社, 1999: 141–191.
    [26] 中华人民共和国交通运输部. JTG D30-2015 公路路基设计规范 [S]. 北京: 人民交通出版社, 2015.

    Ministry of Transport of the People’s Republic of China. JTG D30-2015 Specifications for design of highway subgrades [S]. Beijing: China Communications Press, 2015.
    [27] 杨其新, 关宝树. 落石冲击力计算方法的试验研究 [J]. 铁道学报, 1996, 18(1): 101–106. DOI: 10.3321/j.issn:1001-8360.1996.01.017.

    YANG Q X, GUAN B S. Test and research on calculating method of falling stone impulsive force [J]. Journal of the China Railway Society, 1996, 18(1): 101–106. DOI: 10.3321/j.issn:1001-8360.1996.01.017.
    [28] LABIOUSE V, DESCOEUDRES F, MONTANI S. Experimental study of rock sheds impacted by rock blocks [J]. Structural Engineering International, 1996, 6(3): 171–176. DOI: 10.2749/101686696780495536.
    [29] 日本道路协会. 落石对策便览[M]. 东京: 丸善株式会社出版事业部, 2000.
  • 加载中
图(22) / 表(1)
计量
  • 文章访问数:  3
  • HTML全文浏览量:  2
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-25
  • 修回日期:  2024-07-26
  • 网络出版日期:  2025-01-16

目录

    /

    返回文章
    返回