金属飞片起爆间隙对TATB基炸药到 爆轰距离的影响

郭刘伟 刘宇思 王伟 何雨 桂毓林

郭刘伟, 刘宇思, 王伟, 何雨, 桂毓林. 金属飞片起爆间隙对TATB基炸药到 爆轰距离的影响[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0163
引用本文: 郭刘伟, 刘宇思, 王伟, 何雨, 桂毓林. 金属飞片起爆间隙对TATB基炸药到 爆轰距离的影响[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0163
GUO Liuwei, LIU Yusi, WANG Wei, HE Yu, GUI Yulin. The effect of the flying gap of the metal flyer on the run distance to detonation of TATB-based explosives[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0163
Citation: GUO Liuwei, LIU Yusi, WANG Wei, HE Yu, GUI Yulin. The effect of the flying gap of the metal flyer on the run distance to detonation of TATB-based explosives[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0163

金属飞片起爆间隙对TATB基炸药到 爆轰距离的影响

doi: 10.11883/bzycj-2024-0163
详细信息
    作者简介:

    郭刘伟(1983- ),男,博士,副研究员,guoliuwei1@163.com

    通讯作者:

    何 雨(1987- ),男,博士,副研究员,hexiaoyu@mail.ustc.edu.cn

  • 中图分类号: O381; TJ55

The effect of the flying gap of the metal flyer on the run distance to detonation of TATB-based explosives

  • 摘要: 为获得间隙尺寸对金属飞片起爆TATB基钝感炸药到爆轰距离的影响,采用激光测速技术和太赫兹波测速技术对不同间隙飞片起爆TATB基钝感炸药的动作过程开展了实验研究,获取了钛飞片在0~20 mm间隙内的速度发展历程、击靶速度及形貌,给出了TATB基钝感炸药在不同起爆间隙下的到爆轰距离。结果表明:随着起爆间隙的增大,TATB基钝感炸药的到爆轰距离呈非单调变化特征,与飞片的速度及结构特性相关。飞片起爆炸药的5个速度阶段中,飞片主体与层裂层融合完成阶段的飞片起爆能力最强,隔层起爆次之,层裂层发生前的速度衰减阶段及层裂层与飞片主体融合过程中的飞片起爆能力最弱。
  • 图  1  炸药冲击转爆轰的实验装置

    Figure  1.  Experimental setup for the shock to detonation transition test

    图  2  测量飞层速度的实验装置

    Figure  2.  Experimental setup for the flyer velocity test

    图  3  起爆间隙为0~4 mm时飞片起爆PBX-6炸药的冲击/爆轰波速度

    Figure  3.  The shock or detonation front velocity of PBX-6 initiated by flyer with a gap of 0~4 mm

    图  4  间隙对飞片起爆PBX-6炸药到爆轰距离的影响

    Figure  4.  Run distance to detonation of PBX-6 initiated by the flyer with different gap

    图  5  爆轰驱动飞片的典型速度曲线

    Figure  5.  Typical velocity of the explosive-driven flyer

    图  6  飞片中心撞击炸药时的飞片形貌

    Figure  6.  Shape of the flyer when impacting the center of explosive

    图  7  飞片中心撞击炸药时的飞片速度分布

    Figure  7.  Velocity of the flyer when impacting the center of explosive

    图  8  0~4 mm间隙飞片撞击炸药时的飞片状态

    Figure  8.  Status of the flyer when impacting explosive with a gap of 0~4 mm

    图  9  间隙对飞片起爆PBXL-7炸药的到爆轰距离的影响

    Figure  9.  Run distance to detonation of PBXL-7 initiated by the flyer with different gap

    图  10  0~20 mm间隙飞片撞击PBXL-7炸药时的飞片状态

    Figure  10.  Status of the flyer when impacting PBXL-7 explosive with a gap of 0~20 mm

  • [1] 孙承纬, 文尚刚, 赵峰. 多级炸药爆轰高速驱动技术的Gurney模型优化分析 [J]. 爆炸与冲击, 2004, 24(4): 299–304. DOI: 10.11883/1001-1455(2004)04-0299-6.

    SUN C W, WEN S G, ZHAO F. An optimal analysis of multi-stage explosive accelerated high velocity flyers with the improved Gurney model [J]. Explosion and Shock Waves, 2004, 24(4): 299–304. DOI: 10.11883/1001-1455(2004)04-0299-6.
    [2] 经福谦, 陈俊详. 动高压原理与技术 [M]. 北京: 国防工业出版社, 2006: 139–150.
    [3] BARBOUR R T. Pyrotechnics in industry [M]. New York: McGraw-Hill, 1981: 89.
    [4] SCHIMMEL M L. Quantitative understanding of explosive stimulus transfer: NASA-CR-2341 [R]. Washington: NASA, 1973: 5.
    [5] 翟志强, 王凯民, 蔡瑞娇, 等. 小型雷管输出能力增强技术研究 [J]. 火工品, 2004(2): 12–15. DOI: 10.3969/j.issn.1003-1480.2004.02.004.

    ZHAI Z Z, WANG K M, CAI R J, et al. Experimental study of shock initiation by flyer plate impact in explosive train [J]. Initiators & Pyrotechnics, 2004(2): 12–15. DOI: 10.3969/j.issn.1003-1480.2004.02.004.
    [6] 任志伟. 飞片冲击起爆炸药的数值模拟研究 [D]. 北京: 北京理工大学, 2018. DOI: 10.26948/d.cnki.gbjlu.2018.000406.

    REN Z W. Research on the numerical simulation of shock initiation HNS-IV by flyer [D]. Beijing: Beijing Institute of Technology, 2018. DOI: 10.26948/d.cnki.gbjlu.2018.000406.
    [7] 孙承纬, 卫玉章, 周之奎. 应用爆轰物理 [M]. 北京: 国防工业出版社, 2000: 421–426.
    [8] GUSTAVSEN R L, GEHR R J, BUCHOLTZ S M, et al. Shock initiation of the tri-amino-tri-nitro-benzene based explosive PBX 9502 cooled to -55℃ [J]. Journal of Applied Physics, 2012, 112(7): 074909. DOI: 10.1063/1.4757599.
    [9] 吕军军, 曾庆轩, 李明愉, 等. 起爆高密度TATB炸药的飞片速度阈值 [J]. 爆炸与冲击, 2014, 34(1): 125–128. DOI: 10.11883/1001-1455(2014)01-0125-04.

    LÜ J J, ZENG Q X, LI M Y, et al. Threshold impact velocity for detonation initiation in high-density TATB explosive by flyer [J]. Explosion and Shock Waves, 2014, 34(1): 125–128. DOI: 10.11883/1001-1455(2014)01-0125-04.
    [10] 郭俊峰, 曾庆轩, 李明愉, 等. 叠氮化铜驱动飞片起爆HNS-IV的研究 [J]. 火工品, 2015(6): 1–4.

    GUO J F, ZENG Q X, LI M Y, et al. Study on HNS-IV initiated by flyer driven by cupric azide [J]. Initiators & Pyrotechnics, 2015(6): 1–4.
    [11] 郭俊峰, 曾庆轩, 李明愉, 等. 飞片材料对微装药驱动飞片形貌的影响 [J]. 高压物理学报, 2017, 31(3): 315–320. DOI: 10.11858/gywlxb.2017.03.014.

    GUO J F, ZENG Q X, LI M Y, et al. Influence of flyer material on morphology of flyer driven by micro charge [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 315–320. DOI: 10.11858/gywlxb.2017.03.014.
    [12] 虞德水, 赵锋, 谭多望, 等. JOB-9003和JB-9014炸药平面爆轰驱动飞片的对比研究 [J]. 爆炸与冲击, 2006, 12(2): 140–144. DOI: 10.11883/1001-1455(2006)02-0140-05.

    YU D S, ZHAO F, TAN D W, et al. Experimental studies on detonation driving behavior of JOB-9003 and JB-9014 slab explosives [J]. Explosion and Shock Waves, 2006, 12(2): 140–144. DOI: 10.11883/1001-1455(2006)02-0140-05.
    [13] 虞德水, 赵锋, 彭其先, 等. 激光速度干涉仪在大板实验中的应用研究 [J]. 含能材料, 2011, 19(5): 532–535. DOI: 10.3969/j.issn.1006-9941.2011.05.011.

    YU D S, ZHAO F, PENG Q X, et al. Application of VISAR in bigplate experiment [J]. Chinese Journal of Energetic Materials, 2011, 19(5): 532–535. DOI: 10.3969/j.issn.1006-9941.2011.05.011.
    [14] 姜洋, 孙承纬, 李平, 等. 点起爆炸药驱动平板飞片运动的数值模拟研究 [J]. 高压物理学报, 2009, 23(4): 261–265. DOI: 10.11858/gywlxb.2009.04.004.

    JIANG Y, SUN C W, LI P, et al. Numerical simulation of the motion of flyer driven by slab explosive initiated at centered point [J]. Chinese Journal of High Pressure Physics, 2009, 23(4): 261–265. DOI: 10.11858/gywlxb.2009.04.004.
    [15] 陈清畴, 刘刚, 马弢. 飞片初始形状对雷管起爆能力的影响 [J]. 火工品, 2020(1): 6–9. DOI: 10.3969/j.issn.1003-1480.2020.01.002.

    CHEN Q C, LIU G, MA T. Effects of the flyer shape on detonator output [J]. Initiators & Pyrotechnics, 2020(1): 6–9. DOI: 10.3969/j.issn.1003-1480.2020.01.002.
    [16] 陈清畴, 马弢, 李勇. HNS-Ⅳ炸药驱动飞片速度及形态的数值模拟 [J]. 含能材料, 2018, 26(10): 814–819. DOI: 10.11943/CJEM2018054.

    CHEN Q C, MA T, LI Y. Numerical simulation of velocity and shape of the flyer driven by HNS-Ⅳ explosive [J]. Chinese Journal of Energetic Materials, 2018, 26(10): 814–819. DOI: 10.11943/CJEM2018054.
    [17] 贺翔, 杨立欣, 董海平, 等. 叠氮化铅驱动飞片起爆下级装药的试验研究 [J]. 弹箭与制导学报, 2023, 43(1): 63–69. DOI: 10.15892/j.cnki.djzdxb.2023.01.009.

    HE X, YANG L X, DONG H P, et al. Experimental study on flyer driven by lead azide to cetonate booster charge [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2023, 43(1): 63–69. DOI: 10.15892/j.cnki.djzdxb.2023.01.009.
    [18] TARVER C M. Detonation reaction zones in condensed explosives [J]. AIP Conference Proceedings, 2006, 845(1): 1026–1029. DOI: 10.1063/1.2263497.
    [19] GUSTAVSEN R L, BARTRAM B D, SANCHEZ N J. Detonation wave profiles measured in plastic bonded explosives using 1550 nm photon Doppler velocimetry [J]. AIP Conference Proceedings, 2009, 1195(1): 253–256. DOI: 10.1063/1.3295117.
    [20] ZHAI Z H, SUN C L, LIU Q, et al. Design of terahertz-wave Doppler interferometric velocimetry for detonation physics [J]. Applied Physics Letters, 2020, 116(16): 161102. DOI: 10.1063/1.5142415.
    [21] 郭刘伟, 翟召辉, 韩秀凤, 等. 环境温度对TATB/RDX传爆药起爆及驱动性能的影响 [J]. 爆炸与冲击, 2024, 44(1): 012301. DOI: 10.11883/bzycj-2023-0192.

    GUO L W, ZHAI Z H, HAN X F, et al. Temperature effect on the shock initiation and metal accelerating behavior for TATB/RDX-based explosive [J]. Explosion and Shock Waves, 2024, 44(1): 012301. DOI: 10.11883/bzycj-2023-0192.
  • 加载中
图(10)
计量
  • 文章访问数:  92
  • HTML全文浏览量:  13
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-28
  • 修回日期:  2024-09-10
  • 网络出版日期:  2024-09-12

目录

    /

    返回文章
    返回