[1] |
孙承纬, 文尚刚, 赵峰. 多级炸药爆轰高速驱动技术的Gurney模型优化分析 [J]. 爆炸与冲击, 2004, 24(4): 299–304. DOI: 10.11883/1001-1455(2004)04-0299-6.SUN C W, WEN S G, ZHAO F. An optimal analysis of multi-stage explosive accelerated high velocity flyers with the improved Gurney model [J]. Explosion and Shock Waves, 2004, 24(4): 299–304. DOI: 10.11883/1001-1455(2004)04-0299-6.
|
[2] |
经福谦, 陈俊详. 动高压原理与技术 [M]. 北京: 国防工业出版社, 2006: 139–150.
|
[3] |
BARBOUR R T. Pyrotechnics in industry [M]. New York: McGraw-Hill, 1981: 89.
|
[4] |
SCHIMMEL M L. Quantitative understanding of explosive stimulus transfer: NASA-CR-2341 [R]. Washington: NASA, 1973: 5.
|
[5] |
翟志强, 王凯民, 蔡瑞娇, 等. 小型雷管输出能力增强技术研究 [J]. 火工品, 2004(2): 12–15. DOI: 10.3969/j.issn.1003-1480.2004.02.004.ZHAI Z Z, WANG K M, CAI R J, et al. Experimental study of shock initiation by flyer plate impact in explosive train [J]. Initiators & Pyrotechnics, 2004(2): 12–15. DOI: 10.3969/j.issn.1003-1480.2004.02.004.
|
[6] |
任志伟. 飞片冲击起爆炸药的数值模拟研究 [D]. 北京: 北京理工大学, 2018. DOI: 10.26948/d.cnki.gbjlu.2018.000406.REN Z W. Research on the numerical simulation of shock initiation HNS-IV by flyer [D]. Beijing: Beijing Institute of Technology, 2018. DOI: 10.26948/d.cnki.gbjlu.2018.000406.
|
[7] |
孙承纬, 卫玉章, 周之奎. 应用爆轰物理 [M]. 北京: 国防工业出版社, 2000: 421–426.
|
[8] |
GUSTAVSEN R L, GEHR R J, BUCHOLTZ S M, et al. Shock initiation of the tri-amino-tri-nitro-benzene based explosive PBX 9502 cooled to -55℃ [J]. Journal of Applied Physics, 2012, 112(7): 074909. DOI: 10.1063/1.4757599.
|
[9] |
吕军军, 曾庆轩, 李明愉, 等. 起爆高密度TATB炸药的飞片速度阈值 [J]. 爆炸与冲击, 2014, 34(1): 125–128. DOI: 10.11883/1001-1455(2014)01-0125-04.LÜ J J, ZENG Q X, LI M Y, et al. Threshold impact velocity for detonation initiation in high-density TATB explosive by flyer [J]. Explosion and Shock Waves, 2014, 34(1): 125–128. DOI: 10.11883/1001-1455(2014)01-0125-04.
|
[10] |
郭俊峰, 曾庆轩, 李明愉, 等. 叠氮化铜驱动飞片起爆HNS-IV的研究 [J]. 火工品, 2015(6): 1–4.GUO J F, ZENG Q X, LI M Y, et al. Study on HNS-IV initiated by flyer driven by cupric azide [J]. Initiators & Pyrotechnics, 2015(6): 1–4.
|
[11] |
郭俊峰, 曾庆轩, 李明愉, 等. 飞片材料对微装药驱动飞片形貌的影响 [J]. 高压物理学报, 2017, 31(3): 315–320. DOI: 10.11858/gywlxb.2017.03.014.GUO J F, ZENG Q X, LI M Y, et al. Influence of flyer material on morphology of flyer driven by micro charge [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 315–320. DOI: 10.11858/gywlxb.2017.03.014.
|
[12] |
虞德水, 赵锋, 谭多望, 等. JOB-9003和JB-9014炸药平面爆轰驱动飞片的对比研究 [J]. 爆炸与冲击, 2006, 12(2): 140–144. DOI: 10.11883/1001-1455(2006)02-0140-05.YU D S, ZHAO F, TAN D W, et al. Experimental studies on detonation driving behavior of JOB-9003 and JB-9014 slab explosives [J]. Explosion and Shock Waves, 2006, 12(2): 140–144. DOI: 10.11883/1001-1455(2006)02-0140-05.
|
[13] |
虞德水, 赵锋, 彭其先, 等. 激光速度干涉仪在大板实验中的应用研究 [J]. 含能材料, 2011, 19(5): 532–535. DOI: 10.3969/j.issn.1006-9941.2011.05.011.YU D S, ZHAO F, PENG Q X, et al. Application of VISAR in bigplate experiment [J]. Chinese Journal of Energetic Materials, 2011, 19(5): 532–535. DOI: 10.3969/j.issn.1006-9941.2011.05.011.
|
[14] |
姜洋, 孙承纬, 李平, 等. 点起爆炸药驱动平板飞片运动的数值模拟研究 [J]. 高压物理学报, 2009, 23(4): 261–265. DOI: 10.11858/gywlxb.2009.04.004.JIANG Y, SUN C W, LI P, et al. Numerical simulation of the motion of flyer driven by slab explosive initiated at centered point [J]. Chinese Journal of High Pressure Physics, 2009, 23(4): 261–265. DOI: 10.11858/gywlxb.2009.04.004.
|
[15] |
陈清畴, 刘刚, 马弢. 飞片初始形状对雷管起爆能力的影响 [J]. 火工品, 2020(1): 6–9. DOI: 10.3969/j.issn.1003-1480.2020.01.002.CHEN Q C, LIU G, MA T. Effects of the flyer shape on detonator output [J]. Initiators & Pyrotechnics, 2020(1): 6–9. DOI: 10.3969/j.issn.1003-1480.2020.01.002.
|
[16] |
陈清畴, 马弢, 李勇. HNS-Ⅳ炸药驱动飞片速度及形态的数值模拟 [J]. 含能材料, 2018, 26(10): 814–819. DOI: 10.11943/CJEM2018054.CHEN Q C, MA T, LI Y. Numerical simulation of velocity and shape of the flyer driven by HNS-Ⅳ explosive [J]. Chinese Journal of Energetic Materials, 2018, 26(10): 814–819. DOI: 10.11943/CJEM2018054.
|
[17] |
贺翔, 杨立欣, 董海平, 等. 叠氮化铅驱动飞片起爆下级装药的试验研究 [J]. 弹箭与制导学报, 2023, 43(1): 63–69. DOI: 10.15892/j.cnki.djzdxb.2023.01.009.HE X, YANG L X, DONG H P, et al. Experimental study on flyer driven by lead azide to cetonate booster charge [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2023, 43(1): 63–69. DOI: 10.15892/j.cnki.djzdxb.2023.01.009.
|
[18] |
TARVER C M. Detonation reaction zones in condensed explosives [J]. AIP Conference Proceedings, 2006, 845(1): 1026–1029. DOI: 10.1063/1.2263497.
|
[19] |
GUSTAVSEN R L, BARTRAM B D, SANCHEZ N J. Detonation wave profiles measured in plastic bonded explosives using 1550 nm photon Doppler velocimetry [J]. AIP Conference Proceedings, 2009, 1195(1): 253–256. DOI: 10.1063/1.3295117.
|
[20] |
ZHAI Z H, SUN C L, LIU Q, et al. Design of terahertz-wave Doppler interferometric velocimetry for detonation physics [J]. Applied Physics Letters, 2020, 116(16): 161102. DOI: 10.1063/1.5142415.
|
[21] |
郭刘伟, 翟召辉, 韩秀凤, 等. 环境温度对TATB/RDX传爆药起爆及驱动性能的影响 [J]. 爆炸与冲击, 2024, 44(1): 012301. DOI: 10.11883/bzycj-2023-0192.GUO L W, ZHAI Z H, HAN X F, et al. Temperature effect on the shock initiation and metal accelerating behavior for TATB/RDX-based explosive [J]. Explosion and Shock Waves, 2024, 44(1): 012301. DOI: 10.11883/bzycj-2023-0192.
|